Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 56, nr 4 | 271-291
Tytuł artykułu

Nonlocal theoretical analysis of the dynamic behavior of two Griffith cracks in a piezoelectric strip

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic behavior of two Griffith cracks in a strip made of piezoelectric materials under anti-plane shear waves is investigated by means of the non-local theory for impermeable crack surface conditions. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near the crack tips. By utilizing the Fourier transform, the problem can be solved by means of two pairs of triple integral equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found that no stress and electric displacement singularity are present at the crack tip. This is shown to be consistent with the physical nature.
Wydawca

Rocznik
Strony
271-291
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • Harbin Institute of Technology Center for Composite Materials, P.O. Box 1247 Harbin 150001 P.R. China , sunyg@.hit.edu.cn
autor
  • Harbin Institute of Technology Center for Composite Materials, P.O. Box 1247 Harbin 150001 P.R. China
Bibliografia
  • 1. W.E.F. Deeg, The analysis of dislocation, crack and inclusion problems in piezoelectric solids, Ph. D. thesis, Stanford University 1980.
  • 2. Y.E Pak, Crack extension force in a piezoelectric material, J. Appl. Mech., 57, 647–653, 1990.
  • 3. Z. Suo, C.M. Kuo, D.M. Barnett, J.R. Willis, Fracture mechanics for piezoelectric ceramics, J. Mech. Phys. Solids, 40, 739–765, 1992.
  • 4. H. Gao, T.Y Zhang, P. Tong, Local and global energy rates for an elastically yielded crack in piezoelectric ceramics, J. Mech. Phys. Solids, 45, 491–510, 1997.
  • 5. T.Y. Zhang, J.E Hack, Mode-III cracks in piezoelectric materials, J. Appl. Phys., 71, 5865–5870, 1992.
  • 6. R.M. McMeeking, On mechanical stress at cracks in dielectrics with application to di-electric breakdown, J. Appl. Phys., 62, 3316–3122, 1989.
  • 7. M.L. Dunn, The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids, Engrg. Fracture Mech., 48, 25–39, 1994.
  • 8. J.R. Rice, A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Appl. Mech., 35, 379–386, 1968.
  • 9. D.G.B. Edelen, Non-local field theory, [in:] A.C. Eringen [Ed], Continuum Physics, 4, 75–204, Academic Press, New York 1976.
  • 10. A.C. Eringen, Non-local polar field theory, [in:] A.C. Eringen [Ed.], Continuum Physics, 4, 205–267, Academic Press, New York 1976.
  • 11. A.E. Green, R.S. Rivilin, Multipolar continuum mechanics: functional theory I, Proc. R. Soc., A 284, 303–315, London 1965.
  • 12. K.L. Pan, N. Takeda, Non-local stress field of interface dislocations, Arch. Appl. Mech., 68, 79–184, 1998.
  • 13. K.L. Pan, X. Ji, On presentation of the boundary condition in non-local elasticity, Mech. Res. Commun., 24, 325–330, 1997.
  • 14. K.L. Pan, N. Takeda, Stress distribution on bi-material interface in non-local elasticity, Proceeding of the 39-th JSASS/JSME Structures Conference, 181–184, Japan, Osaka 1997.
  • 15. K.L. Pan,The image force on a dislocation near an elliptic hole in non-local elasticity, Arch. Appl. Mech., 62, 557–564. 1992.
  • 16. K.L. Pan, The image force theorem for a screw dislocation near a crack in non-local elasticity, J. Phys. D: Appl. Phys., 27, 344–346, 1994.
  • 17. K.L. Pan, Interaction of a dislocation and an inclusion in non-local elasticity, Int. J. Engrg. Sci., 34, 1657-1688, 1996.
  • 18. K.L. Pan and J. Fang, Interaction energy of dislocation and point defect in bcc iron, Radiat. Eff. Defect. S., 139, 147–154, 1996.
  • 19. K.L. Pan, Interaction of a dislocation with a surface crack in non-local elasticity, Int. J. Fracture, 69, 307–318, 1995.
  • 20. K.L. Pan and J. Fang, Non-local interaction of dislocation with a crack, Arch. Appl. Mech., 64, 44–51,1993.
  • 21. A.C. Eringen and B.S. Kim, On the problem of crack in non-local elasticity, [in:] P. Thoft-Christensen [Ed.] Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics. Dordrecht, Holland, Reidel 107–113, 1974.
  • 22. A.C. Eringen and B.S. Kim,Relation between non-local elasticity and lattice dynamics, Crystal Lattice Defects, 7, 51–57, 1977.
  • 23. A.C. Eringen, Continuum mechanics at the atomic scale, Crystal Lattice Defects, 7, 109–130, 1977.
  • 24. A.C. Eringen, Linear theory of non-local elasticity and dispersion of plane waves, Int. J. Engrg. Sci., 10, 425–435, 1972.
  • 25. J.L. Nowiński, On Non-local aspects of the propagation of love waves, Int. J. Engrg. Sci., 22, 383–392, 1984.
  • 26. B. Forest, Modelling slip, kind and shear banding in classical and generalized single crystal plasticity, ACTA Mat., 46, 3265–3281, 1998.
  • 27. A.C. Eringen and B.S. Kim, Stress concentration at the tip of crack, Mech. Res. Comm., 1, 233–237, 1974.
  • 28. A.C. Eringen, C.G. Speziale, B.S. Kim, Crack tip problem in non-local elasticity, J. Mech. Phys. Solids, 25, 339–355, 1977.
  • 29. A.C. Eringen, Linear crack subject to shear, Int. J. Fracture, 14, 67–379, 1978.
  • 30. A.C. Eringen, Linear crack subject to anti-plane shear, Eng. Fracture Mech., 12, 211–219, 1979.
  • 31. Z.G. Zhou, B. Wang, S.Y. Du, Investigation of anti-plane shear behavior of two collinear permeable cracks in a piezoelectric material by using the non-local theory, ASME J. Appl. Mech., 69, 388–390, 2002.
  • 32. Z.G. Zhou, B. Wang, Investigation of anti-plane shear behavior of two collinear impermeable cracks in the piezoelectric materials by using the non-local theory, Int. J. Solids Struct., 39, 1731–1742, 2002.
  • 33. J.L. Nowiński, On Non-local Theory of wave propagation in elastic plates, ASME J. Appl. Mech., 51, 608–613, 1984.
  • 34. A.C. Eringen, On differential equations of non-local elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703, 1983.
  • 35. Y. Shindo, R. Togawa, Multiple scattering of antiplane shear waves in a piezoelectric fibrous composite medium with slip at interfaces, Wave Motion, 30, 225–238, 1999.
  • 36. F. Narita, Y. Shindo, Dynamic anti-plane shear of a cracked piezoelectric ceramic. Theor. Appl. Fract. Mech., 29 169–180, 1998.
  • 37. A.C. Eringen, Non-local elasticity and waves, Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics, P. Thoft-Christensen [Ed.], Dordrecht, Holland 81–105, 1974.
  • 38. K.N. Srivastava, R.M. Palaiya, D.S. Karaulia, Interaction of shear waves with two coplanar Griffith cracks situated in an infinitely long elastic strip, Int. J. Fracture, 23, 3–14, 1983.
  • 39. I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series and products, Academic Press, New York 1980.
  • 40. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol.1, McGraw-Hill, New York 1958.
  • 41. S. Itou, Three-dimensional waves propagation in a cracked elastic solid, ASME J. Appl. Mech., 45, 807–811, 1978.
  • 42. S. Itou, Three-dimensional problem of a running crack, Int. J. Engrg. Sci., 17, 59–71, 1979.
  • 43. A.C. Eringen, Interaction of a dislocation with a crack, J. Appl. Phys., 54, 6811–6817, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0004-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.