Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 56, nr 5 | 391-410
Tytuł artykułu

Propagation of a shock discontinuity in an elasto-plastic material: constitutive relations

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The shock discontinuity problem is analyzed in the case of elasto-plastic materials; the jump relations for internal state variables cannot be exhibited directly. For this purpose, we solve the internal shock structure problem, assuming that the shock front is a continuous transition in a thin layer, taking account of dissipative effects. The shock generating function P is introduced. The canonical equations of the shock structure are determined in the general case when the evolution of plasticity is derived from a pseudo-potential of dissipation D. The plane wave is analyzed for an isotropic material obeying a von Mises criterion, assuming that inside the shock the material is under pure axial compression: the existence and uniqueness results are established.
Wydawca

Rocznik
Strony
391-410
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • DCEG Gramat
autor
  • Ecole Polytechnique, LMS, CNRS UMR7649, Palaiseau Cedex, France
Bibliografia
  • 1. W.J. Drugan, Y. Shen, Restrictions on dynamically propagating surfaces of strong discontinuity in elastic-plastic solids, J. Mech. Phys. Solids, 35, 771–787, 1987.
  • 2. J. Hadamard, Leçons sur la propagation des ondes et les équations de l’Hydrodynamique, Hermann, Paris 1903.
  • 3. B. Halphen, Q.S. Nguyen, Sur les matériaux standards génŕalisés, Journal de Mécanique, 14, 1, 1975.
  • 4. P. Germain, Contribution à la théorie des chocs en magnétodynamique des fluides, Publication O.N.E.R.A., 97, 1959.
  • 5. P. Germain, E.H. Lee, On shock waves in elastic-plastic solids, J. Mech. Phys. Solids, 21, 359–382, 1973.
  • 6. P. Germain, Shock waves, jump relations, and structure, Advances in Applied Mechanics, 12, 131–194, 1972.
  • 7. P. Germain, Cours de mécanique des milieux continus, théorie générale, Masson et Cie, 1973.
  • 8. D. Gilbarg, The existence and limit behavior of the one-dimensional shock layer, American Journal of Mathematics, 73, 256–274, 1951.
  • 9. J. Mandel, Ondes de choc longitudinales dans un milieu élastoplastique, Mech. Res. Comm., 5, 6, 353–359, 1978.
  • 10. Q.S. Nguyen, H. Maigre, Restriction thermodynamique et onde de choc plastique, Comptes Rendus Acad. Sciences Paris, 307, Série II, 111–115, 1988.
  • 11. J. Petit, J.L. Dequiedt, A. Halgand, Y. Sadou, Modélisation du comportement dynamique d’un cuivre avec première prise en compte des effets des chocs, Rapport technique CEG, T2001-00118/CEG/NC, 2001.
  • 12. L. Schwartz, Cours d’analyse, Tome 1, Hermann, Paris 1981.
  • 13. C. Stolz, Functional approach in non linear dynamics, Arch. Mech., 47, 3, 421–435, Warszawa 1995.
  • 14. C. Stolz, Sur la propagation d’une ligne de discontinuité et la fonction génératrice de choc pour un solide anélastique, Comptes Rendus Acad. Sciences Paris, 308, Série II, 1–3, 1989.
  • 15. C. Stolz, Energetic approaches in non-linear mechanics, Lecture Notes, 11, Centre of Excellence for Advanced Materials and Structures, IPPT-PAN Warsaw 2004.
  • 16. H. Weyl, Shock waves in arbitrary fluids, Comm. Pure App. Math., 2, 103–122, 1949.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0004-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.