Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 56, nr 3 | 233-246
Tytuł artykułu

On some exponential decay estimates for porous elastic cylinders

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce two new cross-sectional measures for studying the spatial behaviour of the solutions in elastostatics of the porous cylinders. This allows us to extend the range of applicability of the estimates describing the Saint-Venant's decay behaviour of enlarged classes of porous materials.
Wydawca

Rocznik
Strony
233-246
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Faculty of Mathematics, University of Iasi, 6600-Iasi, Romania
Bibliografia
  • 1. J. N. Flavin, R. J. Knops and L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross section, Quart. Appl. Math., 47, 325–350, 1989.
  • 2. S. Chiriµă, Further results on the spatial behavior in linear elastodynamics, An. St. Univ. Iasi, Matematică (to appear).
  • 3. C. O. Horgan and J. K. Knowles, Recent developments concerning Saint–Venant’s principle, [in:] T. Y. Wu and J. W. Hutchinson [Eds.], Adv. Appl. Mech., 23, 179–269, Academic Press, New York 1983.
  • 4. C. O. Horgan, Recent developments concerning Saint–Venant’s principle: An update, Appl. Mech. Rev., 42, 295–303, 1989.
  • 5. C. O. Horgan, Recent developments concerning Saint–Venant’s principle: A second up- date, Appl. Mech. Rev., 49, S101–S111, 1996.
  • 6. R. Lakes, Foam structures with a negative Poisson’s ratio, Science, 235, 1038–1040, 1987.
  • 7. B. D. Caddock and K. E. Evans, Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties; II. Mechanisms and interpretation, Journal of Physics D: Applied Physics, 22, 1877–1882, 1883–1887, 1989.
  • 8. T. Lee and R. S. Lakes, Anisotropic polyurethane foam with Poisson’s ratio greater than 1, Journal of Materials Science, 32, 2397–2401, 1997.
  • 9. Y. C. Wang and R. S. Lakes, Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions, International Journal of Solids and Structures, 39, 4825–4838, 2002.
  • 10. R. S. Lakes, Saint Venant end effects for materials with negative Poisson’s ratios, Journal of Applied Mechanics, 59, 744–746, 1992.
  • 11. S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, Journal of Elasticity, 13, 125–147, 1983.
  • 12. S. Chiriµă, Some growth and decay estimates for a cylinder made of an elastic material with voids, Rev. Roum. Math. Pures et Appl., 39, 17–26, 1994.
  • 13. D. Iesan and R. Quintanilla, Decay estimates and energy bounds for porous elastic cylinders, Z. Angew. Math. Phys. (ZAMP), 46, 268–281, 1995.
  • 14. J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72, 175–201, 1979.
  • 15. M. Ciarletta and D. Iesan, Non–classical elastic solids, Pitman Res. Notes Math. Series, Longman Scientific & Technical, 293, 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0004-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.