Warianty tytułu
Języki publikacji
Abstrakty
The influence of internal restrictions on the elastic properties of anisotropic materials described by Hooke's law is discussed. Spectral decomposition of the stiffness tensor and the compliance tensor is applied. Possible types of restrictions imposed on the deformation modes are considered. An algorithm for accounting for these restrictions in a constitutive law that minimizes stiffening of the material is proposed. As examples, the volume-isotropic materials and fiber-reinforced materials are analyzed.
Czasopismo
Rocznik
Tom
Strony
205-232
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00-049 Warsaw, Poland
- Institute of Fundamental Technological Research PAS, Świętokrzyska 21, 00-049 Warsaw, Poland
Bibliografia
- 1. A. Blinowski and J. Ostrowska-Maciejewska, On the elastic orthotropy, Arch. Mech., 48, 1, 129–141, 1996.
- 2. A. Blinowski and J. Rychlewski, Pure shears in the mechanics of materials, Mathematics and Mechanics of Solids, 4, 71–503, 1998.
- 3. W.T. Burzyński, Strength hypothesis (in Polish), Lwów, 1928. (cf. also Selected papers, Vol. I, PWN, Warszawa 1982).
- 4. P. Chadwick, M. Vianello, and S.C. Cowin, A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids, 49, 2471–2492, 2001.
- 5. S.C. Cowin and M.M. Mehrabadi, Anisotropic symmetries of linear elasticity, Appl. Mech. Rev., 48, 5, 247–285, 1995.
- 6. S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elasticity, 43, 81–108, 1996.
- 7. K. Kowalczyk and J. Ostrowska-Maciejewska, Energy-based limit conditions for transversally isotropic solids, Arch. Mech., 54, 5–6, 497–523, 2002.
- 8. K. Kowalczyk, J. Ostrowska-Maciejewska, and R.B. Pęcherski, An energy-based yield criterion for solids of cubic elasticity and orthotropic limit state, Arch. Mech., 55, 5–6, 2003.
- 9. J. Ostrowska-Maciejewska and J. Rychlewski, Generalized proper states for anisotropic elastic materials, Arch. Mech., 53, 4–5, 501–518, 2001.
- 10. A.C. Pipkin, Constraints in linearly elastic materials, J. Elasticity, 6, 2, 179–193, 1976.
- 11. J. Rychlewski, “CEIIINOSSSTTUV”, Mathematical structure of elastic bodies [in Russian], Technical Report 217, Inst. Mech. Probl. USSR Acad. Sci., Moskva 1983.
- 12. J. Rychlewski, Unconventional approach to linear elasticity, Arch. Mech., 47, 2, 149–171, 1995.
- 13. S. Sutcliffe, Spectral decomposition of the elasticity tensor, J. Appl. Mech., 59, 4, 762–773, 1992.
- 14. Q.S. Zheng, Constitutive relations of linear elastic materials under various internal constraints, Acta Mechanica, 158, 1–2, 97–103, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0004-0011