Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Isotopic composition of apatite-bound sulphate sulphur in the Middle Triassic phospho- genic facies in Svalbard (Bravaisberget and Botneheia formations) shows wide lateral variation, with d34S values ranging from +24.9‰ to -2.0‰. After correction for likely value of coeval seawater sulphate (d34S = +15.1‰ š 1.5‰), the D34S (= d34SCFA - d34Scoeval evaporite) values of the Middle Triassic apatites fall in a range between approx. +10‰ and -17‰, suggesting complex and variable isotopic modifications of seawater sulphate in bottom phosphogenic environments. This variation was primarily forced by changing bottom depositional conditions along the Svalbard shelf which affected the nature, allocation, and intensity of phosphogenic processes in surficial sediments. Four bottom diagenetic systems leading to different isotopic ranges of apatite-bound sulphur are suggested: (1) rapid burial semi-closed system (D34S = +10‰ to +5‰); (2) shielded interface semi-closed system (D34S = 0‰ to -17‰); (3) open oxic/anoxic system (D34S = +3‰ to -1‰); and (4) semi-closed anoxic system (D34S = +6‰ to +4‰). The rapid burial semi-closed system and the open oxic/anoxic system dominated the formation of apatite in the shallow and deep parts of the Svalbard shelf, respectively. Seawater sulphur values of apatites formed in organic-rich deep shelf facies of the Botneheia Formation in central and eastern Svalbard reflect high original porosity of the sediment and nearsurface location of the phosphogenic zone in a thin suboxic and in the upper part of anoxic sulphidic pore environments. Heavier sulphur values of apatites formed in silty to sandy shallow shelf facies of the Bravaisberget Formation in western and southwestern Spitsbergen also reflect phospho- genesis in the suboxic/upper anoxic sulphidic pore environment, but located deeper in sediment column and characterized by limited sulphate exchange with shelf water. The semi-closed anoxic system and the shielded interface semi-closed system developed locally in bottom shelf environ- ments, reflecting peculiar, spatially restricted depositional conditions. Isotopically heavy apatitic sulphur in organic-rich facies of the Botneheia Formation deposited to the east of the Billefjorden Fault Zone in Spitsbergen reflects phosphogenesis in semi-closed anoxic system developed in surficial sediments overlain by anoxic bottom water enriched in residual dissolved sulphate. Isotopically light apatitic sulphur in microbial mat-generated phosphorite horizons occurring locally in both the shallow (Bravaisberget Formation) and deep shelf (Botneheia Formation) facies in Spitsbergen reflects phosphogenesis in nearsurface environment shielded by gradient-type microbial mats. The light apatitic sulphur originated from intense oxidation of hydrogen sulphide at a narrow oxic/anoxic interface stabilized by the growth and metabolic activity of the mat-forming communities.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--109
Opis fizyczny
Bibliogr. 76 poz., rys., map., tab.
Twórcy
autor
- Polish Academy of Sciences, Institute of Geological Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland, kpkraj@twarda.pan.pl
Bibliografia
- [1]. Bein, A. & Sandler, A., 1983. Early diagenetic oxidation and maturation trends in organic matter extracted from Eocene chalks and cherts. Chem. Geol., 38: 213-224.
- [2]. Bein, A., Almogi-Labin, A. & Sass, E., 1990. Sulfur sinks and organic carbon relationships in Cretaceous organic-rich carbonates: Implications for evaluation of oxygen-poor depositional environments. Am. Jour. Sci., 290: 882-911.
- [3]. Benmore, R. A., Coleman, M. L. & McArthur, J. M., 1983. Origin of sedimentary francolite from its sulphur and carbon isotope composition. Nature, 302: 516-518.
- [4]. Bernard, C. & Fenchel, T., 1995. Mats of colourless sulphur bacteria. 2. Structure, composition of biota and successional patterns. Mar. Ecol., Progr. Ser., 128: 171-179.
- [5]. Berner, R. A., 1981. A new geochemical classification of sedimentary environments. Jour. Sediment. Petrol., 51: 359-365.
- [6]. Berner, R. A. & Westrich, J. T., 1985. Bioturbation and the early diagenesis of carbon and sulfur. Am. Jour, Sci., 285: 193-206.
- [7]. Birkenmajer, K., 1977. Triassic sedimentary formations of the Hornsund area, Spitsbergen. Stud. Geol. Polon., 51: 7-74.
- [8]. Bliskovski, V. Z., Grinienko V. A. Migdisov L. L. & Savina L. I., 1977. Isotopic composition of sulfur in minerals of phosphorite ores (in Russian). Geokhimiya, 8: 1208-1216.
- [9]. Bottcher, M. E., Rusch, A., Hopner, T. & Brumsack, H. J., 1997. Stable sulfur isotope effects related to local intense sulfate reduction in a tidal sandflat (southern North Sea): Results from loading experiments. Isot. Environ. Health Stud., 33: 109-129.
- [10]. Burnett, W. C., 1977. Geochemistry and origin ofphosphorite deposits from off Peru and Chile. Geol. Soc. Amer. Bull., 88: 813-823.
- [11]. Canfield, D. E., 1994. Factors influencing organic carbon preservation in marine sediments. Chem. Geol., 114: 315-329.
- [12]. Chambers, L. A. & Trudinger, P. A., 1979. Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiol. Jour., 1: 249-293.
- [13]. Chanton, J. P., Martens, C. S. & Goldhaber, M. B., 1987a. Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta, 51: 1187-1199.
- [14]. Chanton, J. P., Martens, C. S. & Goldhaber, M. B., 1987b. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulphur isotopic budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta, 51: 1201-1208.
- [15]. Clavero, V., Garcia-Sanchez, M. J., Niell, F. X. & Fernandez, J. A., 1997. Influence of sulphate enrichment on the carbon dioxide and phosphate fluxes across the sediment-water interface. HydrobioL, 345: 59-65.
- [16]. Claypool, G. E., Holser, W. T. Kapłan, I. R. Sakai, H. & Zak, I., 1980. The age curves of sulfur and oxygen in marine sulfate and their mutual interpretation. Chem. Geol., 28: 199-260.
- [17]. Coleman, M. L., 1985. Geochemistry ofdiagenetic non-silicate minerals: kinetic considerations. Phil. Trans. Roy. Soc London, A315: 39-56.
- [18]. Compton, J. S., Hodell, D. A. Garrido, J. R. & Mallinson, D. J., 1993. Origin and age ofphosphorite from the south-central Florida Platform: Relation of phosphogenesis to sea-level fluctuations and δ13C excursions. Geochim. Cosmochim. Acta, 57: 131-146.
- [19]. Fanlo, I. & Ayora, C., 1998. The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean. Chem. Geol., 146: 135-154.
- [20]. Fenchel, T. & Bernard, C., 1995. Mats of colourless sulphur bacteria. 1. Major microbial processes. Mar. Ecol., Progr. Ser., 128: 161-170.
- [21]. Ferdelman, T. G., Lee, C., Pantija, S., Harder, J., Bebout, B. M. & Fossig, H., 1997. Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim. Cosmochim. Acta, 61: 3065-3079.
- [22]. Fisher, I. S. J., 1986. Pyrite formation in bioturbated clays from the Jurassic of Britain. Geochim. Cosmochim. Acta, 50: 517-523.
- [23]. Föllmi, K.B., 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev., 40: 55-124.
- [24]. Froelich, P. N., Klinkhammer, G. P., Bender, G. P., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. & Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075-1090.
- [25]. Froelich, P. N., Arthur, M. A., Burnett, W. C., Dealdn, M., Hensley, V., Jahnke, R., Kaul, L., Kim, K.-H., Roe, K., Soutar, A. & Vathakanon, C., 1988. Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation. Mar. Geol., 80: 309-343.
- [26]. Fry, B., Ruf, W., Gest, H. & Hayes, J. M., 1988. Sulfur isotope effects associated with oxidation of sulfide by 02 in aqueous solution. Chem. Geol. (Isot. Geosci. Sect.), 73: 205-210.
- [27]. Glenn, C. R., 1990. Pore water, petrologie and stable carbon isotopic data bearing on the origin of Modern Peru margin phosphorites and associated authigenic phases. In: W. C. Burnett 8c S. R. Riggs (Eds), Phosphate Deposits of the World: Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge: 46-61.
- [28]. Glenn, C. R., Mimi, K. F., Riggs, S. R., Baturin, G. N., Grimm, K. A., Trappe, J., Abed, A. M., Galli-Olivier, C., Garrison, R. E., Ilyin, A. V., Jehl, C., Rohrlich, V., Sadaqah, R. M. Y., Schidlowski, M., Sheldon, R. E. & Siegmund, H., 1994. Phosphorus and phosphorites: Sedimen-tology and environmental concems. Eclogae geol. Hely., 87: 747-788.
- [29]. Goldhaber, M. B. & Kaplan, I. R., 1974. The sulphur cycle. In: D.E. Goldberg (Ed.), The Sea. V ol. 5. Wiley, New York: 569-655.
- [30]. Habicht, K. S. & Canfield, D. E., 1997. Sulphur isotope fractionation during bacterial sulphate reduction in organic-rich sediments. Geochim. Cosmochim. Acta, 61: 5351-5361.
- [31]. Harland, W. B., 1997. The Geology of Svalbard. Geol. Soc. London, Mem., 17, 521 pp.
- [32]. Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G., 1990. A Geologie Time Scale 1989. Cambridge University Press, Cambridge, 263 pp.
- [33]. Heijs, S. K., Jonkers, H. M., van Gemerden, H., Schaub, B. E. M. & Stal, L. J., 1999. The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) -the relative importance of chemical and biological processes. Estuarine Coast. Shelf Sci., 49: 21-35.
- [34]. Holser, W. T., 1977. Catastrophic chemical events in the history of the ocean. Nature, 267: 403-408.
- [35]. Ingall, E. D. & Jahnke, R., 1997. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol., 139: 219-229.
- [36]. Ingall, E. D., Bustin, R. M. & Van Cappellen, P., 1993. Influence ofwater column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta, 57: 303-316.
- [37]. Jarvis, I., Burnett, W. C., Nathan, Y., Almbaydin, F. S. M., Attia, A. K. M., Castro, L. N., Flicoteaux, R., Hilmy, M. E., Husajn, V., Qutawnah, A. A., Serjani, A. & Zanin, Y. N., 1994. Phosphorite geochemistry: State-of-the art and environmental concerns. Eclogae geol Helv., 87: 643-700.
- [38]. Jørgensen, B. B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 43: 363-374.
- [39]. Jørgensen, B. B., 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature, 296: 643-645.
- [40]. Kolodny, Y. & Luz, B., 1992. Isotope signatures in phosphate deposits: Formation and diagenetic history. In: N Clauer & S Chaudhuri (Eds), Isotopic Signatures and Sedimentary Records. Springer-Verlag, Berlin, Heidelberg: 69-121.
- [41]. Krajewski, K. P., 2000a. Phosphogenic facies and processes in the Triassic of Svalbard. Stud. Geol. Polon., 116: 7-84.
- [42]. Krajewski, K. P., 2000b. Diagenetic recrystallization and neoformation of apatite in the Triassic phosphogenic facies in Svalbard. Stud. Geol. Polon., 116: 111-137.
- [43]. Krajewski, K. P., 2000c. Phosphorus concentration and organic carbon preservation in the Blank-nuten Member (Botneheia Formation, Middle Triassic), Sassenfjorden, Spitsbergen. Stud. Geol. Polon., 116: 139-173.
- [44]. Krajewski, K. P., 2000d. Phosphorus and organic carbon reservoirs in the Bravaisberget Formation (Middle Triassic), Homsund, Spitsbergen. Stila'. Geol. Polon., 116: 175-209.
- [45]. Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanie sulphate and phosphate. In: P. Fritz & J. Ch. Fontes (Eds), Handbook of Environmental Isotope Geochemistry. Vol. 3. Elsevier, Amsterdam: 219-255.
- [46]. Mallinson, D. J. & Compton, J. S., 1998. The influence of iron sulfide oxidation on the sulfur isotope analysis of Miocene phosphorites from Florida, USA. Geochim. Cosmochim. Acta, 62: 3689¬3694.
- [47]. Maynard, J. B., 1982. Extension of Berner's "New geochemical classification of sedimentary environments" to ancient sediments. Jour. Sediment. Petrol., 52: 1325-1331.
- [48]. McArthur, J. M., 1978. Systematic variations in the content of Na, Sr, CO2 and SO4 in marine carbonate fluorapatite and their relation to weathering. Chem. Geol., 21: 41-52.
- [49]. McArthur, J. M., 1980. Post-depositional alteration of the carbonate-fluorapatite phase of Moroccan Phosphates. In: Y. K. Bentor (Ed.), Marine Phosphorites. Geochemistry, Occurrence, Genesis. Soc. Econ. Paleontol. Mineral., Spec. Publ., 29: 53-60.
- [50]. McArthur, J. M., 1985. Francolite geochemistry - compositional controls during formation, diage-nesis, metamorphism and weathering. Geochim. Cosmochim. Acta, 49: 23-35.
- [51]. McArthur, J. M., Benmore, R. A., Coleman, M. L., Soldi, C., Yeh, H.-W. & O'Brien, G. W., 1986. Stable isotopic characterization of francolite formation. Earth Planet. Sci. Letters, 77: 20-34.
- [52]. Mertz, K. A., Jr., 1989. Origin of hemipelagic source rocks during Early and Middle Miocene, Monterey Formation, Salinas Basin, California. Am. Assoc. Petrol. Geol., Bull., 73: 510-524.
- [53]. Mossmann, J.-R., Aplin, A. C., Curtis, C. D. & Coleman, M. L., 1991. Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin. Geochim. Cosmochim. Acta, 55: 3581-3595.
- [54]. Mørk, A., Knarud, R. & Worsley, D., 1982. Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In: A. F. Embry & H. R. Balkwill (Eds), Arctic Geology and Geophysics. Can. Soc. Petrol. Geol. Mem., 8: 371-398.
- [55]. Mørk, A., Dallmann, W. K., Dypvik, H., Johannessen, E. P., Larssen, G. B., Nagy, J., Nottvedt, A., Olaussen, S., Pčelina, T. M. & Worsley, D., 1999. Mesozoic lithostratigraphy. In: W. K. Dalhnann (Ed.), Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock. Norsk Polarinstitutt, Tromso: 27-214.
- [56]. Nathan, Y., 1984. The mineralogy and geochemistry of phosphorites. In: J. O. Nriagu & P. B. Moore (Eds), Phosphate Minerals. Springer-Verlag, Berlin: 275-291.
- [57]. Nathan, Y. & Nielsen, H., 1980. Sulfur isotopes in phosphorites. In: Y.K. Bentor (Ed.), Marine Phosphorites. Geochemistry, Occurrence, Genesis. Soc. Econ. Paleontol. Mineral., Spec. Publ., 29: 73-78.
- [58]. Otte, S., Kuenen, J. G., Nielsen, L. P., Pearl, H. W., Zopfi, J., Schulz, H. N., Teske, A., Strottnann, B., Gallardo, V. A. & Jergensen, B. B., 1999. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. App. Environ. Microbiol., 65: 3148-3157.
- [59]. Piper, D. Z. & Kolodny, Y., 1987. The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δl8O. Deep-Sea Res., 34: 897-911.
- [60]. Poulton, S. W., Botrell, S. H. & Underwood, C. J., 1998. Porewater sulphur geochemistry and fossil preservation during phosphate diagenesis in a Lower Cretaceous shelf mudstone. Sedimentology, 45: 875-887.
- [61]. Rees, C. E., Jenkyns, W. J. & Monter, J., 1978. The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta, 42: 377-381.
- [62]. Rice, C. A., Tuttle, M. L. & Reynolds, R. L., 1993. The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions. Chem. GeoL , 107: 83-95.
- [63]. Shen, Y., Zhao, R., Chu, X. & Jiajin, L., 1998. The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition sedes of the Yangtze Platform. Precambrian Res., 89:77-86.
- [64]. Steel, R. J. & Worsley, D., 1984. Svalbard's post-Caledonian strata - An atlas of sedimentational patterns and palaeogeographic evolution. In: A. M. Spencer et al. (Eds), Petroleum Geology of the North European Margin. Nor. Pet. Soc., Graham & Trotman, London: 109-135.
- [65]. Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeogr., Palaeoclimatol., Palaeoecol., 132: 97-118.
- [66]. Strauss, H., 1999. Geological evolution from isotope proxy signals — sulfur. Chem. Geol., 161: 89-101.
- [67]. Strohl W. R., 1989. Beggiatoaceae. In: P. M. Bryant, N. Pfening & J. G. Holt (Eds), Bergey 's Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore: 2089-2106.
- [68]. Toran. L. & Harris, R. F., 1989. Interpretation of sulfur and oxygen isotopes in biological and abiological oxidation. Geochim. Cosmochim. Acta, 53: 2341-2348.
- [69]. Trappe, J., 1998. Phanerozoic Phosphorite Depositional Systems. Lecture Notes in Earth Sci., 76. Springer-Verlag, Berlin, 316 pp.
- [70]. Tyson, R. V. & Pearson, T. H., 1991. Modern and ancient continental shelf anoxia. In: R. V. Tyson & T. H. Pearson (Eds), Modern and Ancient Continental Shelf Anoxia. Geol. Soc. London, Spec. Publ., 58: 1-24.
- [71]. Weitschat, W. & Lehmann, U., 1983. Stratigraphy and ammonoids from the Middle Triassic Botneheia Formation (Daonella shales) of Spitsbergen. Mitt. Geol. Palaont. Inst. Univ. Hamburg, 54: 27-54.
- [72]. Weitschat, W. & Dagys, A. S., 1989. Triassic biostratigraphy of Svalbard and a comparison with NE-Siberia. Mitt. Geol. Palaont. Inst. Univ. Hamburg, 68: 179-213.
- [73]. Wiessner, W., 1981. The Family Beggiatoaceae. In: M. P. Starr, H. Stolp, H. G. TrUper, A. Balows & H. G. Schlegel (Eds), The Prokatyotes. A Handbook of Habitats, Isolation, and Identification of Bacteria. Vol. I. Springer-Verlag, New York: 380-389.
- [74]. Winsnes, T. S., 1986. Bedrock Map of Svalbard and Jan Mayen 1:1000 000. Norsk Polarinstitutt Temakart Nr. 3. Norsk Polarinst., Oslo.
- [75]. Yanagisawa, F. & Sakai, H., 1983. Thermal decomposition of barium sulfate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Anal. Chem., 55: 985-987.
- [76]. Zhabina, N. N. & Volkov, I. I., 1978. A method of determination of various sulfur compounds in sea sediments and rocks. In: W. E. Krumbein (Ed.), Environmental Biogeochemistry and Geomicro-biology. Vol. 3. Ann Arbor Publishers Inc, Michigan: 735-746.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0015-0046