Czasopismo
2004
|
Vol. 29, no. 2
|
259-273
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an overview of intelligent soft computing techniques within the framework of active control of noise and vibration. Tools considered include genetic algorithms (GAs), neural networks (NNs) and fuzzy logic (FL). The paper highlights associated merits and potential benefits of the approaches in modelling and control of dynamic systems. These are demonstrated in the control of noise in free-field propagation and vibration suppression in 1D and 2D flexible structures. The paper shows that the potential benefits of the individual components can be exploited and approaches for design and development of hybrid soft-computing algorithms devised for modelling and control of dynamic systems. It is demonstrated that significant benefits in terms of performance can be gained with such hybrid algorithms.
Czasopismo
Rocznik
Tom
Strony
259-273
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
- The University of Sheffield, Department of Automatic Control and Systems Engineering, Sheffield, United Kingdom, o.tokhi@sheffield.ac.uk
Bibliografia
- [1] ZADEH, L. A., Fuzzy logic, neural networks and soft computing, Communications of ACM, 37, 3, 77–84 (1994).
- [2] TOKHI M. O., Active adaptive control of noise and vibration, Archives of Control Sciences, 13, 2, 117–139 (2003).
- [3] HOLLAND J., Adaptation in natural and artificial systems, University of Michigan Press, USA 1975.
- [4] CHIPPERFIELD A. J., FLEMING P. J., POHLHEIM H., FONSECA C., A genetic algorithm toolbox for MATLAB, Proceedings of the International Conference on Systems Engineering, September, Coventry, UK 1994.
- [5] MAT DARUS I. Z., TOKHI M. O., Modelling of a flexible plate structure using finite difference methods, Proceeding of the 2nd World Engineering Conference, Malaysia 2002.
- [6] LUO F.-L., UNBEHAUEN R., Applied neural networks for signal processing, Cambridge University Press, New York 1997.
- [7] SZE T. L., System identification using radial basis neural networks, PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK 1995.
- [8] MINSKY M., PAPERT S., Perceptrons: An introduction to computational geometry, MIT Press, Cambridge 1969.
- [9] OMATU S., KHALID M., YUSOF R., Neuro-control and its applications, Springer, London 1996.
- [10] JANG J. S. R., SUN C. T., MIZUTANI E., Neuro-fuzzy and soft computing, Prentice Hall, New Jersey 1997.
- [11] SHARMA S. K., TOKHI M. O., Neural network optimisation using genetic algorithm: A hierarchical fuzzy method, Proceedings of AARTC00: IFAC Workshop on Algorithms and Architectures for Realtime Control, Palma de Mallorca (Spain), 15-17 May 2000, pp. 71–76.
- [12] SIDDIQUE M. N. H., TOKHI M. O., GA-based neuro-fuzzy controller for flexible-link manipulator, Proceedings of IEEE International Conference on Control Applications, Glasgow, 18–20 September 2002, pp. 471–476.
- [13] TOKHI M. O., SHAHEED M. H., Adaptive neuro-inverse-dynamic active vibration control of a flexible manipulator, Proceedings of International Ecological Congress, St. Petersburg, 14-16 June 2000, pp. 47–54.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0007-0144