Czasopismo
2001
|
Vol. 26, no. 2
|
93-105
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The paper is concerned with application of the BEM in the environmental noise problems. The main step of the BEM is the discretization of the boundary into elements. Using too many elements is not efficient. To eliminate this drawback, in this paper two ideas are proposed. First of them is the optimal discretization, and the second one is the solution of the modelling problem in rotated coordinates. Since the optimal discretization theory derived for the function of one variable, then only the 2D problem is considered. The commercial code SYSNOISE is used to solve the numerical examples. The results confirm the utility of the proposed ideas.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93-105
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Pedagogical University Institute of Technics (35-310 Rzeszów, Reytana 16A, Poland), abranski@atena.univ.rzeszow.pl
autor
- University of Mining and Metallurgy Department of Mechanics and Vibroacoustics (30-059 Kraków, Al. Mickiewicza 30, Poland), olszewsk@uci.agh.edu.pl
Bibliografia
- 1] C.K. Amedin, Y. Champoux and A. Berry, Acoustical characterization of absorbing porous materials through transmission measurements in free eld, J.A.S.A., 102, 4, 1982 1994 (1997).
- [2] C. de Boor, A practical guide to splines, Springer-Verlag, N.Y., Berlin 1978.
- [3] A. Bra«ski, Problem of an optimal discretization in acoustic modelling, Archives of Acoustics, 23, 2, 239 249 (1998).
- [4] A. Bra«ski, Smooth model of an acoustic source, Engineering Analysis with Boundary Elements, 22, 333 340 (1998).
- [5] C.A. Brebbia and J. Dominguez, Boundary elements, An introductory course, Comp. Mech. Publ., McGraw-Hill Book Company, Southampton 1992.
- [6] S.N. Chandler-Wilde and D.C. Hothersall, E cient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J.S.V., 180, 5, 705 724 (1995).
- [7] J.S.R. Chisholm and R.M. Morris, Mathematical methods in physics, North-Holland Publishing Company, Amsterdam 1966.
- [8] R.D. Ciskowski and C.A. Brebbia, Boundary element methods in acoustics, Comp. Mech. Publ., McGraw-Hill Book Company, Southampton 1991.
- [9] M.E. Delany and E.N. Bazley, Acoustical properties of brous absorbent materials, Appl. Acoustics, 3, 105 116 (1970).
- [10] L. Demkowicz, Adaptative nite elements methods [in Polish], The Cracow University of Technology, Monography 46, Cracow 1986.
- [11] L. Demkowicz, A. Karafiat and J.T. Oden, Solution of elastic scattering problems in linear acoustics using h−p boundary element method, Comput. Methods Appl. Mech. Eng., 101, 251 282 (1992).
- [12] D. Duhamel and P. Sergent, Sound propagation over noise barriers with absorbing ground, J.S.V., 218, 5, 799 823 (1998).
- [13] Z. Engel et al., Acoustic barriers [in Polish], University of Mining and Metallurgy, Cracow 1990.
- [14] Z. Engel and S. Zaremba, Analysis of acoustic barriers [in Polish], Mechanics, 10, 4, 9 29 (1991).
- [15] O. von Estorff, Boundary elements in acoustics, Comp. Mech. Publ., Southampton 2000.
- [16] J.J. Grannell, A hierarchic p-version boundary-element method for axisymmetric acoustic scattering and radiation, J.A.S.A., 95, 5, 2320 2329 (1994).
- [17] D.C. Hothersall, K.V. Horoshenkov, P.A. Morgan and M.J. Swift, Scale modelling of railway noise barriers, J.S.V., 234, 2, 207 223 (2000).
- [18] W.S. Hwang, Hypersingular boundary integral equations for exterior acoustic problems, J.A.S.A., 101, 6, 3336 3342 (1997).
- [19] T. Isei, T.F.W. Embleton and J.E. Piercy, Noise reduction by barriers on nite impedance ground, J.A.S.A., 67, 1, 46 58 (1980).
- [20] P. Jean and Y. Gabillet, Using a boundary element approach to stady small screens close to rails, J.S.V., 231, 3, 673 679 (2000)
- [21] P. Juhl, A note on the convergence of the direct collocation boundary element method, J.S.V., 212, 4, 703 719 (1998).
- [22] A. Karafiat, An analysis of the boundary element method for the acoustic scattering problem [in Polish], The Cracow University of Technology, Monography 204, Cracow 1996.
- [23] A. Karafiat, On hp-error estimation in the BEM for a three-dimensional Helmholtz exterior problem, Comput. Meth. Appl. Mech. Eng., 150, 199 214 (1997).
- [24] Y. Kawai and T. Terai, The application of integral equation methods to the calculation of sound attenuation by barriers, Appl. Acoustics, 31, 101 117 (1990).
- [25] R. Klees and R. Lehman, Calculation of strongly singular and hypersingular surface integrals, J. Geodesy, 72, 530 546 (1998).
- [26] Y.L. Li, M.J. White and M.H. Hwang, Greens functions for wave propagation above an impedance ground, J.A.S.A., 96, 4, 2485 2490 (1994).
- [27] R. Makarewicz, Enviromental noise [in Polish], OWN, Pozna« 1996.
- [28] J. Michalczyk, R. Korczy«ski, A. Goªa± and W. Brodzi«ski, Acoustic barrier, Patent PL 175823 B1, 1999 (Polish patent).
- [29] E. Rank, Adaptive h- , p- and hp-versions for boundary integral element methods, Int. J. Numer. Methods Eng., 28, 1335 1349 (1989).
- [30] J.J. do Rego Silva, Acoustic and elastic wave scattering using boundary elements, Comp. Mech. Publ., Southampton Boston 1994.
- [31] E. Skudrzyk, The foundations of acoustics, Springer-Verlag, Wien New York 1971.
- [32] H.B. Song and J.S. Bolton, A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J.A.S.A., 107, 3, 1131 1152 (2000).
- [33] E.P. Stephan, The h-p boundary element method for solving 2- and 3-dimensional problems, Comput. Meth. Appl. Mech. Eng., 133, 183 208 (1996).
- [34] J.R. Stewart and T.J.R. Hughes, h-adaptive nite element computation of time-harmonic ex-terior acoustics problems in two dimensions, Comput. Meth. Appl. Mech. Eng., 146, 65 89 (1997).
- [35] SYSNOISE Rev 5.3A, LMS Numerical Technologies, Interleuvenlaan 70, B-3001 Leuven, Belgium 1997.
- [36] J. Trevelyan, Boundary elements for engineers, Comp. Mech. Publ., McGraw-Hill Book Company, Southampton 1994.
- [37] T.W. Wu, Boundary elements in acoustics, Fundamentals and computer code, Comp. Mech. Publ., Southampton 2000.
- [38] P. Zhang and T.W. Wu, Hypersingular integral formulation for acoustic radiation in moving ows, J.S.V., 206, 3, 309 326 (1997).
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT3-0005-0011