Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | Vol. 50, no 4 | 383-394
Tytuł artykułu

Reflexivity and the separable quotient problem for a class of Banach spaces

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let E be a Banach lattice and let X be its closed subspace such that: X is complemented in E, or the norm of E is order continuous. Then X is reflexive iff X* contains no isomorphic copy of l1 iff for every n ≥ l, the nth dual X(n) of X contains no isomorphic copy of l1 iff X has no quotient isomorphic to c0 and X does not have a subspace isomorphic to l1 (Theorem 2). This is an extension of the results obtained earlier by Lozanovskiĭ, Tzafriri, Meyer-Nieberg, and Diaz and Fernández. The theorem is applied to show that many Banach spaces possess separable quotients isomorphic to one of the following spaces: c0, l1, or a reflexive space with a Schauder basis.
Wydawca

Rocznik
Strony
383-394
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
Bibliografia
  • [1] S. A. Argyros, V. Felouzis, Interpolating hereditary indecomposable Banach spaces, J. Amer. Math. Soc., 13 (2000) 243-294.
  • [2] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, New York 1985.
  • [3] Y. A. Abramovich, A. I. Veksler, G. Ya. Lozanovsky: his contribution to the theory of Banach lattices, in: Function Spaces (Poznań 1998), 5-21; Lecture Notes in Pure and Appl. Math., 213, Dekker, New York 2000.
  • [4] J. Bourgain, H∞ is a Grothendieck space, Studia Math., 75 (1983) 193-216.
  • [5] J. Bourgain, F. Delbaen, A class of special L∞-spaces, Acta Math., 145 (1980) 155-176.
  • [6] A. V. Bukhvalov, A. I. Veksler, G. Ya. Lozanovskiĭ, Banach lattices - some Banach aspects of the theory (in Russian), Uspekhi Mat. Nauk, 34 (1979) 137-183; English transl. in: Russian Math. Surveys, 34 (1979) 159-212.
  • [7] S. Diaz, A. Fernández, Reflexivity in Banach spaces, Arch. Math. (Basel), 63 (1994) 549-552.
  • [8] S. J. Dilworth, M. Girardi, J. Hagler, Dual Banach Spaces which Contain an Isometric Copy of L1, Bull. Pol. Ac.: Math., 48 (2000) 1-12.
  • [9] T. Figiel, W. B. Johnson, L. Tzafriri, On Banach Lattices and Spaces Having Local Unconditional Structure, with Applications to Lorentz Function Spaces, J. Approx. Theory, 13 (1975) 395-412.
  • [10] W. T. Gowers, A Banach space not containing c0, l1 or a reflexive subspace, Trans. Amer. Math. Soc., 344 (1994) 407-420.
  • [11] W. T. Gowers, B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc., 6 (1993) 851-874.
  • [12] M. Gonzalez, V. M. Onieva, Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc., 105 (1989) 117-121.
  • [13] J. Hagler, W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math., 28 (1977) 325-330.
  • [14] R. Haydon, Subspaces of the Bourgain-Delbaen space, Studia Math., 139 (2000) 275-293.
  • [15] R. Herman, R. Whitley, An example concerning reflexivity. Studia Math., 28 (1966/67) 289-294.
  • [16] L. Janicka, Some measure-theoretical characterization of Banach spaces not containing l1, Bull. Acad. Pol. Sér. Mat., 27 (1979) 561-565.
  • [17] W. B. Johnson, H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math., 43 (1972) 77-92.
  • [18] J. Kąkol, W. Śliwa, Remarks concerning the separable quotient problem, Note Mat., 13 (1993) 277-282.
  • [19] H. E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Ciênc., 44 (1972) 185-188.
  • [20] G. Ya. Lozanovskiĭ, On Banach lattices and bases, (in Russian), Funktsional. Anal, i Prilozhen., 1 (3) (1967) 92.
  • [21] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I, Springer-Verlag, Berlin 1977.
  • [22] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin 1979.
  • [23] P. Meyer-Nieberg, Banach lattices, Springer-Verlag, Berlin 1991.
  • [24] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Complut., 10 (1997) 299-330.
  • [25] K. Musiał, D. Popa, The weak Radon-Nikodým property in spaces of nuclear operators, Quaestiones Math., 20 (1997) 677-683.
  • [26] S. Önal, T. Terzioğlu, Concrete subspaces and quotient spaces of locally convex spaces and completing sequences, Dissertationes Math., 318 (1992) 1-36.
  • [27] A. Pełczyński, On strictly singular and strictly cosingular operators. I. strictly sinqular and strictly cosinqular operators in C (S-spaces), Bull. Acad. Pol. Sci., Sér. Mat., 13 (1965) 31-36.
  • [28] A. Pełczyński, On Banach spaces containing L1 (μ), Studia Math., 30 (1968) 231-246.
  • [29] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (μ) to Lr (ν), J. Funct. Anal., 10 (1969) 176-214.
  • [30] S. Saxon, A. Wilansky, The equivalence of some Banach space problems, Colloq. Math., 37 (1977) 217-226.
  • [31] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin 1974.
  • [32] W. Śliwa, M. Wojtowicz, Separable quotients of locally convex spaces, Bull. Pol. Ac.: Math., 43 (1995) 175-185.
  • [33] L. Tzafriri, Reflexivity in Banach lattices and their subspaces, J. Funct. Anal., 10 (1972) 1-18.
  • [34] W. Wnuk, On the order-topological properties of the quotient space LA, Studia Math., 79 (1984) 139-149.
  • [35] W. Wnuk, Banach lattices with order continuous norms, Adv. Top. Math., PWN, Warszawa 1999.
  • [36] M. Wójowicz, Effective constructions of separable quotients of Banach spaces, Collect. Math., 48 (1997) 809-815.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.