Czasopismo
2002
|
Vol. 50, no 3
|
361-372
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We investigate properties of functions that are harmonic with respect to symmetric stable processes which are not necessarily rotation invariant. We prove the Harnack inequality and the boundary Harnack principle for a Lipschitz domain. To obtain this we use Poisson kernel estimates. We also give an estimate concerning the rate of decay of harmonic functions near the boundary of the domain.
Rocznik
Tom
Strony
361-372
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, bogdan@im.pwr.wroc.pl
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, stos@im.pwr.wroc.pl
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, sztonyk@im.pwr.wroc.pl
Bibliografia
- [1] J. Bertoin, Lévy processes, Cambridge University Press, Cambridge 1996.
- [2] K. Bogdan, T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Stud. Math., 133 (1) (1999) 53-92.
- [3] K. Bogdan, T. Byczkowski, Potential theory of the Schrödinger operator based on the fractional Laplacian, Prob. Math. Stat., 20 (2000) 293-335.
- [4] R. M. Blumenthal, R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math., Academic Press Inc., New York 1968.
- [5] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1) (1997) 43-80.
- [6] K. L. Chung, Z. Zhao, From Brownian motion to Schrödinger’s equation, Springer-Verlag, New York 1995.
- [7] P. Głowacki, W. Hebisch, Pointwise estimates for densities of stable semigroups of measures, Studia Math., 104 (1993) 243-258.
- [8] N. Ikeda, S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ., 2-1 (1962) 79-95.
- [9] W. E. Pruitt, S. J. Taylor, The potential kernel and hitting probabilities for the general stable process in Rd, Trans. Amer. Math. Soc., 146 (1969) 299-321.
- [10] R. Song, J.-M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal., 168 (2) (1999) 403-427.
- [11] P. Sztonyk, On harmonic measures for Lévy processes, Prob. Math. Statist., 20 (2) (2000) 383-390.
- [12] S. J. Taylor, Sample path properties of a transient stable process, J. Math. Mech., 16 (1967) 1229-1246.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1357