Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | Vol. 48, no 4 | 407--412
Tytuł artykułu

Positivity of Schilling functions

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that every non-trivial [L^1]-solution of the Schilling problem is either positive or negative almost everywhere on its support.
Wydawca

Rocznik
Strony
407--412
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
  • GSF-Forschungszentrum, Institut für Biomathematik Und Biometrie, 85758 Neuherberg, Germany (RG), gigen@gsf.de
autor
Bibliografia
  • [1] K. Baron, A. Simon, P. Volkmann, Solutions d'une équation fonctionnelle dans l'espace des distributions tempérées, C. R. Acad. Sci. Paris Sér. I Math, 319 (1994) 1249-1252.
  • [2] K. Baron, P. Volkmann, Unicité pour une équation fonctionnelle, Ann. École Norm. Sup. Cracovie. Prace Matematyczne, 13 (1993) 53-56.
  • [3] L. Bartłomiejczyk, Solutions with big graph of homogeneous functional equations in a single variable, Aequationes Math., 56 (1998) 149-156.
  • [4] J. Borwein, R. Girgensohn, Functional equations and distribution functions, Res. Math., 26 (1994) 229-237.
  • [5] I. Daubechies, J. Lagarias, Two-scale difference equations I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991) 1388-1410.
  • [6] G. Derfel, R. Schilling, Spatially chaotic configurations and functional equations with resealing, J. Phys. A, 29 (1996) 4537-4547.
  • [7] A. Lasota, Invariant principle for discrete time dynamical systems, Univ. Iagel. Acta Math., 31 (1994) 111-127.
  • [8] A. Lasota, M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, New York 1994.
  • [9] R. D. Mauldin, K. Simon, The equivalence of some Bernoulli convolutions to Lebesgue measure, Proc. Amer. Math. Soc., 126 (1998) 2733-2736.
  • [10] J. Morawiec, Some properties of probability distribution solutions of linear functional equations, Aequationes Math., 56 (1998) 81-90.
  • [11] Y. Peres, B. Solomyak, Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc., 350 (1998) 4065-4087.
  • [12] R. Schilling, Spatially chaotic structures, in: Nonlinear Dynamics in Solids, ed.: H. Thomas, Springer, Berlin (1992) 213-241.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1351
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.