Czasopismo
1998
|
Vol. 46, no 4
|
383--390
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the following question: which semialgebraic subsets of [R^n] can be realized as tangent cones to real algebraic subsets of [R^n]? At first we prove that the answer is positive for every closed semialgebraic cone in [R^n] of dimension [is less than or equal to 2]. Then, for closed semialgebraic cones A in [R^n] admitting a sufficiently nice algebraic presentation, we explicitely give equations of an algebraic subset V [...] [R^n] having A as its tangent come.
Rocznik
Tom
Strony
383--390
Opis fizyczny
Bibliogr. 4 poz.,
Twórcy
autor
- Dipartamento di Matematica, Uniwersita di Pisa, Via Buonarotti 2, 56127 Pisa, Italy, fortuna@dm.unipi.it
autor
- Dipartamento di Matematica, Uniwersita di Pisa, Via Buonarotti 2, 56127 Pisa, Italy, ferraro@dm.unipi.it
Bibliografia
- [1] Н. Whitney, Tangents to on analytic variety, Ann. of Math., 81 (1965) 496-549.
- [2] D. Cox, J. Little, D. O'Shea, Ideals, varieties and algorithms, Springer-Verlag, 1992.
- [3] D. O' Shea, L. Wilson, Tangent end normnal cones to real surfaces, Chinese Quarterly J. of Math., 10 (1995) 62-71.
- [4] J. М. Ruiz, A note on а separation problem, Arch. Math., 43 (1984) 422-426.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1207