Czasopismo
2000
|
Vol. 48, no 2
|
203--213
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we deal with the problem of existence and uniqueness of continuous iterative roots of homeomorphisms of the circle. Let F : [S^1 --> S^1] be a homeomorphism without periodic points. If the limit set of the orbit [F^k(z), k belongs to Z] equals [S^1], then F has exactly n iterative roots of n-th order. Otherwise F either has no iterative roots of n-th order or F has infinitely many iterative roots depending on an arbitrary function. In this case we determined all iterative roots of n-th order of F.
Rocznik
Tom
Strony
203--213
Opis fizyczny
Bibliogr. 7 poz.,
Twórcy
autor
- Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland, mczdun@wsp.krakow.pl
Bibliografia
- [1] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math., 55 (1998) 106-121.
- [2] K. Ciepliński, On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen, to be published.
- [3] K. Ciepliński, On conjugacy of disjoint iteration groups on the unit circle, Ann. Math. Sil., to be published.
- [4] I. P. Cornfeld, S. V. F omi n, Y. G. Sinai, Ergodic theory, Grundlehren Math. Wiss. 245, Springer-Verlag, Berlin, Heidelberg, New York 1982.
- [5] M. Kuczma, On the functional equation ω2 (x) = g(x), Ann. Polon. Math., 11 (1961) 161-175.
- [6] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications 32, Cambridge Univ. Press, Cambridge 1990.
- [7] P. Walters, An introduction to ergodic theory, Springer-Verlag, New York, Heidelberg, Berlin 1982.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1193