Czasopismo
2000
|
Vol. 48, no 3
|
287--292
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We show that, for any p [is greater than or equal to] 1, there exists an essentially self-adjoint operator for which the set of p-quasi-analytic vectors is not linear.
Rocznik
Tom
Strony
287--292
Opis fizyczny
Bibliogr. 10 poz.,
Twórcy
autor
- Institute of Applied Mathematics and Mechanics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland, rusinek@mimuw.edu.pl
Bibliografia
- [1] P. R. Chernoff, Some remarks on quasi-analytic vectors, Trans. Amer. Math. Soc., 167 (1972) 105-113.
- [2] P. R. Chernoff, Quasi-analytic vectors and quasi-analytic functions, Bull. Amer. Math. Soc., 81 (1975) 637-646.
- [3] I. Ciorinescu, On quasi-analytic vectors for some classes of operators, in: Proceeding of the fourth conference on operator theory (Timisoara 1979), Tipografia Uni-versitalii, (1980) 214-226.
- [4] G. Constantin, V.I. Isträţescu, On quasi-analytic vectors for some classes of operators, Portugal Math., 42 (1983/84) 219-224.
- [5] A. El Koutri, Vecteurs a-quasi analytiques et semi-groupes analytiques, C. R. Acad. Sci. Paris Ser. I Math., 309 (1989) 767-769.
- [6] V. . Isträţescu, Introduction to linear operator theory, Marcel Dekker, New York 1981.
- [7] D. Masson, W. K. M c Clary, Classes of C' vectors and essential self-adjointness, J. Funct. Anal., 10 (1972) 19-32.
- [8] A. E. Nussbaum, Quasi-analytic vectors, Ark. Mat., 6 (1965) 179-191.
- [9] A. E. Nussbaum, A note on quasi-analytic vectors, Studia Math., 33 (1969) 305-309.
- [10] J. Rusinek, p-Analytic and p-quasi-analytic vectors, Studia Math., 127 (1998) 233-250.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1021