Czasopismo
2001
|
Vol. 49, no 4
|
417--432
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We consider three types of geometries of circles (Moebius plane, Laguerre plane and Minkowski plane, cf. [4) with respect to so-called multicentral automorphisms. An automorphism [phi] of any geometry of circles is central if it has a fix point P and [phi] becomes a central collineation in the derived projective plane M(P). For any central automorphism [phi] we try to establish the whole set of points R such that [phi] becomes a central collineation in M(R.). Than [phi] is called multicentral if this set contains at least two points. Moreover, [phi] is proper if existing of a point [R is not equal to P], is not caused by the fact that [phi] is central in M(P). There is no proper multicentral automorphism in a Moebius plane. The most interesting proper multicentral automorphisms are involutorial mappings: double homotheties in Minkowski planes, and (sigma, tau)homologies in Laguerre planes. We give some examples.
Rocznik
Tom
Strony
417--432
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Faculty of Mathematics and Informatics, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 14, 10-561 Olsztyn, Poland, jjakob@matman.uwm.edu.pl
autor
- Faculty of Mathematics and Informatics, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 14, 10-561 Olsztyn, Poland, matras@moskit.uwm.edu.pl
Bibliografia
- [1] R. Artzy, Minkowski parallel - translation, planes and their coordinatization, .J. Geom., 9 (1977) 19-27.
- [2] R. Artzy, H. Groh, Laguerre and Minkowski planes produced by dilatations, J. Geom., 26 (1986) 1-20.
- [3] A. Barlotti, K. Strambach, Collineation groups of ovals and of ovoidal Laguerre planes, J. Geom., 57 (1996) 36-57.
- [4] Y. Chen, A characterization of some geometries of chains, Canad. J. Math., XXVI (2) (1974) 257-272.
- [5] P. Dembowski Finite geometries, Springer-Verlag, Berlin, Heidelberg, New York 1968.
- [6] K. J. Dienst, Minkowski-Ebenen mit Spiegelungen, Monatsh. Math., 84 (1977) 197-208.
- [7] J. Jakóbowski, A new construction for Minkowski planes, Geom. Dedicata, 69 (1968) 179-188.
- [8] J. Jakóbowski, H. J. Kroll, A. Matraś, Minkowski planes admitting automorphisms of small type, J. Geom., 71 (2001) to be published.
- [9] M. Klein, Classification of Minkowski planes by transitive groups of homotheties „T. Geom., 43 (1992) 116-128.
- [10] M. Klein, H. J. Kroll, A classification of Minkowski planes, J. Geom.. 36 (1989) 99-109.
- [11] R. Löwen, U. Pfüller, Two-dimensional Laguerre planes over convex functions, Geom. Dedicata, 23 (1987) 73-85.
- [12] R. Löwen, U. Pfüller, Two-dimensional Laguerre planes with large auto-morphism groups, Geom. Dedicata, 23 (1987) 87-96.
- [13] N. Peresy, Finite Minkowski planes in which every circle-symmetry is an automorphism, Geom. Dedicata, 10 (1981) 269-282.
- [14] W. A. Pierce, Moulton planes, Canad. J. Math., 13 (1961) 427-436
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0973