Czasopismo
2001
|
Vol. 49, no 1
|
45--65
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study a diffusion with a random, time Markovian drift and non-vanishing diffusivity. We prove the invariance principle when the drift possesses certain decorrelation properties both in time and space.
Rocznik
Tom
Strony
45--65
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, University of California, Davis, Ca 95616-8633, U.S.A., fannjian@mat.ucdavis.edu
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa,
- Institute of Mathematics, Maria-Curie Skłodowska University, Pl. Marii-Curie Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
- [1] M. Avellaneda, A. J. Majda, Mathematical models with exact reformatization for turbulent transport, Comm. Math. Phys., 131 (1990) 381-429.
- [2] P. Billingsley, Convergence of probability measures, Wiley and Sons, New York 1968.
- [3] R. Carmona, Transport properties of Gaussian velocity fields, in: First S.M.F. Winter school in random media. Rennes 1994, Real and stochastic analysis: recent advances, ed.: M. M, Rao, CRC Press.
- [4] N. Dunford, J. T. Schwartz, Linear operators. Part I, Wiley and Sons, New York 1988.
- [5] A. Fannjiang, T. Komorowski, An invariance principle for diffusions in turbulence, Ann. Probab., 27 (1999) 751-781.
- [6] A. Fannjiang, T. Kornorowski, Turbulent diffusion in Markovian flows, Ann. Appl. Probab., 9 (1999) 591-610.
- [7] A. Fannjiang, G. C. Papanicolaou, Diffusion in turbulence, Probab. Theory Related Fields, 105 (1996) 279--334.
- [8] T. Komorowski, An abstract Lagrangian process related to convection-diffusion of a passive tracer in a Markovian flow, Bull. Pol. Ac.: Math., 48 (2000) 413-427.
- [9] T. Komorowski, G.C. Papanicolaou, Motion in a Gaussian, incompressible flow, Ann. Appl. Probab., 7 (1997) 229-264.
- [10] S. M. Kozlov, The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys, 40 (1985) 73-145.
- [11] C. Landim, S. Olla, H. T. Yau, Convection diffusion equation with space-time ergodic random flow, Probab. Theory Related Fields, 112 (1998) 203-220.
- [12] Z. Ma, M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer-Verlag, New York 1992.
- [13] A. S. Monin, A. M. Yaglom, Statistical fluid mechanics of turbulence, Vols. I, II, MIT Press, Cambridge 1971, 1975.
- [14] K. Oelschlager, Homogenization of a diffusion process in a divergence free random field, Ann. Probab. 16 (1988) 1084-1126.
- [15] G. C. Papanicolaou, S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficient, Colloq. Math. Soc. Janos Bolyai, 27 (1982) 835-873.
- [16] G. Samorodnitsky, M. S. Taqqu, Stable non-gaussian random processes, Chapman and Hall, New York, London 1994.
- [17] L. W u, Forward-backward martingale decomposition and compactness results for additive functionals of stationary ergodic Markov processes, Ann. Inst. H. Poincaré, 35 (1999) 121-141.
- [18] A. Fannjiang, T. Komorowski, Diffusions in long-range correlated Ornstein- Uhlenbeck flows, submitted
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0697