Czasopismo
1998
|
Vol. 46, no 4
|
401--417
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
First we establish a general existence theorem for a generalized vector qusi-variational inequality in a topological vector space by using a set-valued and vector generalization of Ky Fan minimax principle. As applications, several existence theorems for generalized vector quasi-variational inequalities are derived under assumptions of order-lower (order-upper) semicontinuity or monotonicity of set-valued mappings.
Słowa kluczowe
Rocznik
Tom
Strony
401--417
Opis fizyczny
Bibliogr. 30 poz.,
Twórcy
autor
- Department of Mathematics, Harbin Normal University, Harbin 150080, China
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Bibliografia
- [1] G. М. Lee, D. S. Kim, В. S. Lee, S. J. Cho, Genelized vector variational inequality and fuzzy extension, Аpр1. Math. Lott., 6 (1993) 47-51.
- [2] G. М. Lee, D. S. Kim, В. S. Lee, Generalized vector variational inequality, Appl Math. Lett., 9 (1996) 39-42.
- [3] A. Daniilidis, N. Hadjisavvas, Existence theorems for vector variatunal inequalities, Bull. Australian Math. Soci., 54 (1996) 473-481.
- [4] I. V. Konnov, J. C. Yao, On the generalized vector variational ineqnalit problem, J. Math. Anal. Appl., 206 (1997) 42-58.
- [5] W. Song, Generalized vector variational inequalities, in: Vector Variatioival Inequalites and Vector Equilibria, ed.: (F. Giannessi), Kluwer, to be published.
- [6] G. Y. Chin G. M. Cheng, Vector variational inequalities and vecior optimization, Lecture Notes in Economice and mathematical System, Springer-Verlag, Heidelberg 285 (1987).
- [7] F. Giannessi, Theoreme of the, alternative, guadrtic, programs, and complentarity prolilems, in: Variational Inequalities and Complemnentarity Рrоblems eds: R. W. Cottlе, F. Giannessi, J. L. Lions, J. Wiley, New York (1980) 151-186.
- [8] G. Y. Chen, X. Q. Yang, Vector complementarity problem and its equivalence with, weak minimal, element in ordered spaces, J. Math. Anal. Appl., 153 (1990) 136-158.
- [9] G. Y. Chen, Existence of solution for a vector variational inequality: аn extension of the Наrtmam-Stampacchiа theorem, J. Optim. Theory and Appl., 74 (1992) 445-456.
- [10] Х. Q. Yang, Vector variational inequality and its duality, Nonlinear Analysis: ТМА., 21 (1993) 869-877.
- [11] А. H. Siddiqi, Q. H. Hnsari, A. Khаliq, On vector variational inequalities, J. Optim. Theory аnd Арр1., 84 (1995) 171-180.
- [12] G. М. Lee, D. S. Кim, B. S. Lee, Some existence theorems for generalized vector variational inequality, Вull. Korean Math. Soci., 32 (1995) 343-348.
- [13] Т. C. Lai, J. C. Yao, Existence results for VVIP, Appl. Math. Lett., 9 (1996) 17-19.
- [14] S. J. Yu, J. C. Yao, On Vector variational inequalities, J. Optim. Theory and Appl., 89 (1996) 749-769.
- [15] D. Chan, J. S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Research, 7 (1982) 211-222.
- [16] М. H. Shih, K. K. Тan, Gerieralized quasi-variational inequalities in locally convex spaces, J. Math. Anal. Appl., 108 (1985) 333-343.
- [17] W. K. Kim, Rema'rk on a generalized quasi-variational inequalities, Proc. Amer. Math. Soc., 103 (1988) 667-668.
- [18] J. Wang, Generalized quasi-variational inequalities and their selection mарping, J. Math., 10 (1990) 337-340.
- [19] J. C. Yao, Generalized quasi-variational inequality Problems with discontinuous mappings, Math. Oper. Research., 20 (1995) 465-478.
- [20] X. Z. Yuаn. The study of generalized quasi-variational inequalities, Bull. Pol. Ac. Math., 44 (1996) 310-325.
- [21] J. P. Penot, A. Sterna-Karwat, Рarametrized multicriteria optimization: continuity and closedness of optmal multifunctions, J. Math. Anal.Appl,, 120 (1986) 150-168.
- [22] C. Berge, Topological Spaces, Macmillan Co., New York 1963.
- [23] J. P. Аubin, I. Ekeland, Applied Nonlinear Analysis, J. Wiley, New York 1984.
- [24] J. Zhou, G. Chen, Diagonal convexity conditions for prоblms in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl., 132 (1988) 213-225.
- [25] S. Park. Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in: Fixced Point Theory and Applications, еd.: K.-K. Tаn, World Sci., River Edge, NI, (1992) 248-277.
- [26] X. Р. Ding, K. K. Tan, A minimax inequality with applications to existence of equilibrium point, and fixed point theorems, Colloquium Math., 63 (1992) 233-243.
- [27] R. B. Holmes, Geometric Functional Analysis and its Applications, Springer-Verlag, New York 1975.
- [28] X. P. Ding, K. K. Tan, Generalized variational inequalities and generalized quasi-variational inequalities, J. Math. Anal. Appl., 148 (1990) 497-508.
- [29] P. Cubiotti, A counter-eхample on a quasi-variational inequality without lower semicontinuity assumption, Proc. Amer. Math. Soc., 123 (1995) 969-970.
- [30] К. Knеser, Sur un théoréme fondamental de la théorie des jeux, C.R.A. Sci. Paris, 234 (1952) 2418-2420.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0576