Czasopismo
2002
|
Vol. 50, no 4
|
373-382
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Let X and Y be two Banach spaces such that Y has a subsymmetric Schauder basis (yn). We study the consequences of the following assumption: X* has a subspace isomorphic to Y. If the basis is shrinking, then X* contains a copy of Y** (Proposition 1), and if X has the so-called controlled separable projection property (in particular, if X is weakly compactly determined), then X* contains a copy of [yn*]* (Theorem 1). These results are applied for Orlicz sequence spaces.
Rocznik
Tom
Strony
373-382
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland, M.Wojtowicz@im.uz.zgora.pl
Bibliografia
- [1] D. Amir, J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. Math., 88 (1968) 35-46.
- [2] C. Bessaga, A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958) 151-164.
- [3] P. N. Dowling, N. Randrianantoanina, Asymptotically isometric copies of l∞ in Banach spaces and a theorem of Bessaga and Pełczyński, Proc. Amer. Math. Soc., 128 (2000) 3391-3397.
- [4] P. N. Dowling, Isometric copies of c0 and l∞ in duals of Banach spaces, J. Math. Anal. Appl., 244 (2000) 223-227.
- [5] P. N. Dowling, On l∞ subspaces of Banach spaces, Collect. Math., 51 (2000) 255-260.
- [6] M. Gonzalez, V. M. Onieva, Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc., 105 (1989) 117-121.
- [7] J. Hagler, W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math., 28 (1977) 325-330.
- [8] W. B. Johnson, H. P. Rosenthal, On ω*-basic sequences and their applications to the study of Banach spaces, Studia Math., 43 (1972) 77-92.
- [9] B. Josefson, Weak sequential converegence in the dual of a Banach space does not imply norm convergence, Ark. Math., 13 (1975) 79-89.
- [10] P. Lewis, Mapping properties of c0, Colloq. Math., 80 (1999) 235-244.
- [11] P. Lewis, Spaces of operators and c0, Studia Math., 145 (2001) 213-218.
- [12] K. Lindberg, On subspaces of Orlicz sequence spaces, Studia Math., 45 (1973) 119-146.
- [13] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin 1977.
- [14] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid, 10 (1997) 299-330.
- [15] A. Nissenzweig, w* sequential convergence, Israel J. Math., 22 (1975) 266-272.
- [16] A. Pełczyński, Projections in certain Banach spaces, Studia Math., 19 (1960) 209-228.
- [17] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (μ) to Lr (ν), J. Funct. Anal., 4 (1969) 176-214.
- [18] I. Singer, Bases in Banach spaces. I, Springer-Verlag, Berlin 1970.
- [19] W. Śliwa, (LF)-spaces and the separable quotient problem (in Polish), Ph.D. Thesis, Adam Mickiewicz University, Poznań 1996.
- [20] M. Valdivia, Resolutions of the identity in certain Banach spaces, Collect. Math., 39 (1988) 127-140.
- [21] L. Vaśak, On one generalization of weakly compactly generated Banach spaces, Studia Math., 70 (1981) 11-19.
- [22] V. Zizler, Some corollaries of an Amir-Lindenstrauss’s theorem on weakly compactly generated Banach spaces, Mathematica (Cluj), 15 (38) (1973) 331-333.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0572