Czasopismo
2000
|
Vol. 48, no 3
|
293--302
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We consider Iterated Function Systems on Polish spaces. The Hausdorff dimension of invariant distributions for such systems is estimated.
Rocznik
Tom
Strony
293--302
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Institute Of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland , szarek@gate.math.us.edu.pl
- Institute of Mathematics, Polish Academy of Sciences, Staromiejska 8/6, 40-013 Katowice, Poland
Bibliografia
- [1] M. Arbeiter, N. Patzschke, Random self-similar multifractals, Math. Nachr., 181 (1996) 5-42.
- [2] M.F. Barnsley, S.G. Demko, J.H. Elton, J. S. Geronimo, Invariant measures arising from iterated function systems with place dependent probabilities, Ann. Inst. Henri Poincare, 24 (1988) 367-394.
- [3] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems, 10 (1990) 451-462.
- [4] R. M. Dudley, Probabilities and metrics, Aarhus Universitet, Aarhus 1976.
- [5] J. H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems, 7 (1987) 481-488.
- [6] S. Ethier, T. Kurtz, Markov processes, John Wiley and Sons, New York 1986.
- [7] W. Feller, An introduction to probability theory and its applications, John Wiley and Sons, New York 1981.
- [8] R. Fortet, B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. Ecole Norm. Sup., 70 (1953) 267-285.
- [9] J. S. Geronimo, D. P. Hardin, An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constr. Approx., 5 (1989) 89-98.
- [10] A. Lasota, J. Myjak, Semifractals on Polish spaces, Bull. Pol. Ac.: Math., 46 (1998) 179-196.
- [11] A. Lasota, J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam., 2 (1994) 41-77.
- [12] L. Olse n, A multifractal formalism, Adv. Math., 116 (1995) 82--195.
- [13] Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, J. Statist. Phys., 71 (1993) 529-547.
- [14] T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math., 67 (1997) 247-257.
- [15] T. Szarek, Singularity of fractal measures, Ann. Polon. Math., to be published.
- [16] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 (1982) 109-124.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0357