Czasopismo
2002
|
Vol. 50, no 2
|
141-154
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Two equivalent definitions of the Cech-Lebesgue dimension are extended to closed (continuous) maps. This leads to two different dimension-like functions: the covering dimension and partition dimension of maps. A few characterizations of at most n-dimensional maps (for both dimensions) are proved as well as countable and locally finite sum theorems.
Rocznik
Tom
Strony
141-154
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, krzem@zeus.polsl.gliwice.pl
Bibliografia
- [1] S. A. Bogatyĭ, M. Madirimov, On the dimension theory of metrizable spaces with periodic homeomorphisms (in Russian), Mat. Sb., 98 (1975) 72-83, 158.
- [2] D. Buhagiar, Fiberwise generał topology: a brief outlook, Topology Atlas Invited Contributions 5 (2000), URL http:\\at.yorku.ca\t\a\i\c\34.htm.
- [3] R. Engelking, General topology, PWN, Warszawa 1977.
- [4] R. Engelking, Theory of dimensions, finite and infinite, Heldermann, Lemgo 1995.
- [5] J. Krzempek, Compositions of simple maps, Fund. Math., 162 (1999) 149-162.
- [6] B. A. Pasynkov, On the dimension and geometry of mappings (in Russian), Dokl. Akad. Nauk SSSR, 221 (1975) 543-546.
- [7] B. A. Pasynkov, Extension to mappings of certain notions and assertions concerning spaces (in Russian), in: Mappings and functors, Moscow State Univ., Moscow (1984) 72-102.
- [8] B. A. Pasynkov, On the geometry of continuous mappings of finite-dimensional metrizable compacta (in Russian), Tr. Mat. Inst. Steklova, 212 (1996) 147-172.
- [9] J. Suzuki, Note on a theorem for dimension, Proc. Japan Acad., 35 (1959) 201-202.
- [10] I. A. Vaĭnšteĭn, On closed mappings (in Russian), Moskov. Gos. Univ. Učenye Zapiski Matematika, 155 (1952) 3-53.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0074