Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 48, iss. 2 | 533-544
Tytuł artykułu

Determination of turbulence and upper size limit in Jameson flotation cell by the use of computational fluid dynamic modelling

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the coarse particle flotation, turbulence which can be treated as energy dissipation rate, is one of the most significant parameters effecting the recovery and grade. Therefore, determination of energy dissipation rate is very beneficial for delineation of coarse particle flotation and determining the maximum floatable particle size in any cell. In this study, Computational Fluid Dynamic (CFD) modelling for the Jameson cell has been carried out to determine the high turbulent regions and the effect on the upper floatable size limit. The CFD modelling has been utilized for determining the flow characteristics and hydrodynamic behaviour of the Jameson flotation cell. In parallel with this purpose the turbulence map of the cell has been determined and energy dissipation rate determined by using the CFD modelling. According to the result acquired from the CFD modelling, there are two main turbulent regions which are mixing zone in the upper part of the downcomer and critical region at the separation tank. While the high turbulence at the mixing zone supplies fine bubbles and fast collection of particles, the turbulence at the separation tank causes the main detachment of the bubble-particle aggregate. Then, the increase in turbulence in the tank causes the decrease of the maximum floatable size of particles. In addition, the average energy dissipation rate in the critical region has been determined and used for estimation of the maximum floatable particle size in the Jameson cell. Moreover, the effect of hydrophobicity has been discussed.
Wydawca

Rocznik
Strony
533-544
Opis fizyczny
Bibliogr. 33 poz., fig.
Twórcy
autor
autor
autor
Bibliografia
  • 1. CHIPFUNHU, D., ZANIN, M., GRANO,S., 2011, Flotation behaviour of fine particles with respect to contact angle, Chemical Engineering Research and Design, 2011, Article in Press.
  • 2. ÇINAR, M., ŞAHBAZ, O., ÇINAR, F., KELEBEK, Ş. AND ÖTEYAKA, B., 2007, Effect of Jameson cell operating variables and design characteristics on quartz-dodecylamine flotation system, Minerals Engineering, 20, 1391-1396.
  • 3. COWBURN, J., HARBORT, G., MANLAPIG, E. POKRAJCIC, Z., 2006, Improving the recovery of coarse coal particles in Jameson cell, Minerals Engineering, 19, 609-618.
  • 4. DRZYMALA, J., 1994a, Characterization of materials by Hallimond tube flotation, Part 1. Maximum size of entrained particles, Int. J. Miner. Process, 42, 139–152.
  • 5. DRZYMALA, J., 1994b, Hydrophobicity and collectorless flotation of inorganic materials, Adv. Colloid Interface Sci., 50, 143–185.
  • 6. EVANS, G.M., ATKINSON, B., JAMESON, G.J., 1995, The Jameson Cell. Flotation Science and Engineering, ed. Matis K.A., Marcel Dekker Inc., 331-363.
  • 7. EVANS, G.M., DOROODCHI, E., LANE, G.L., KOH, P.T.L., SCHWARZ, M.P., 2008, Mixing and gas dispersion in mineral flotation cells, Chemical Engineering Research and Design, 86, 1350–1362.
  • 8. FLUENT 6.3 User’s Guide, Fluent Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766, USA, 2006.
  • 9. GAMBIT User’s Guide, Fluent Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766, USA, 2006.
  • 10. GONJITO, F.C., Fornasiero, D., Ralston, J., 2007, The limits of fine and coarse particle flotation, The Canadian Journal of Chemical Engineering, 85, 739‒747.
  • 11. HARBORT, G.J., MANLAPIG, E.V. ve DEBONO, S.K., 2002, Particle collection within the Jameson cell downcomer, Trans. IMM Section C, 111/Proc. Australas IMM, V. 307.
  • 12. JAMESON, G.J., 2010, New directions in flotation machine design, Minerals Engineering, 23(11-13), 835-841.
  • 13. KOH, P.T.L., MANICKAM, M., M.P. SCHWARZ, 2000, CFD simulation of bubble- partıcle collisions in mıneral flotation cells, Minerals Engineering, 13, 1455-1463.
  • 14. KOH, P.T.L., SCHWARZ, M.P., 2003, CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell, Minerals Engineering, 16, 1055-1059.
  • 15. KOH, P.T.L., M.P. SCHWARZ, 2006, CFD modelling of bubble–particle attachments in flotation cells, Minerals Engineering, 19, 619–626.
  • 16. KOWALCZUK, P., SAHBAZ, O., DRZYMALA, J., 2011, Maximum size of floating particles in different flotation cells, Minerals Engineering, 24, 766-771.
  • 17. LANE, G.L., SCHWARZ, M.P., EVANS, G.M., 2002, Predicting gas–liquid flow in a mechanically stirred tank, Applied Mathematical Modelling, 26, 223–235.
  • 18. LUI, T.Y. SCHWARZ, M.P., 2009, CFD based modelling of bubble particle collision efficiency with mobile bubble surface in a turbulent environment, International Journal of Mineral Processing, 90, 45–55.
  • 19. NGUYEN, A.V., 2003, New method and equations for determining attachment tenacity and particle size limit in flotation, International Journal of Mineral Processing, 68, 167-182.
  • 20. ÖTEYAKA, B., SOTO, H., 1995, Modelling of negative bias column for coarse particles flotation, Minerals Engineering, 8, 91-100.
  • 21. ÖTEYAKA, B., 1993, Modelisation D’une Colonne De Flottation Sans Zone D’ecume Pour La Separation Des Particules Grossieres, PhD Thesis, Universite Laval, Quebec, Canada, 1993.
  • 22. PYKE, B., FORNASIERO, D., RALSTON, J., 2003, Bubble particle heterocoagulation under turbulent conditions, Journal of Colloid and Interface Science, 265, 141–151.
  • 23. RALSTON, J., FORNASIERO, D. HAYES, R., 1999, Bubble-particle attachment and detachment in flotation, International Journal of Mineral Processing, 56, 133-164.
  • 24. RODRIGUES, R.T., RUBIO, J., 2007, DAF–dissolved air flotation: Potential applicationsin the mining and mineral processing industry, International Journal of Mineral Processing, 82,1–13.
  • 25. ŞAHBAZ, O., ÖTEYAKA, B., KELEBEK, Ş., UÇAR A. ve DEMIR, U., 2008, Separation of unburned carbonaceous matter in bottom ash using Jameson cell, Separation and Purification Technology, 62, 103-109.
  • 26. SAHBAZ, O., 2010, Modification of downcomer in Jameson Cell and its effect on performance. Ph.D. Thesis, Dumlupinar University, Department of Mining Engineering, Turkey, 2010.
  • 27. SCHUBERT, H., 1999, On the turbulence-controlled microprocesses in flotation machines, International Journal of Mineral Processing, 56, 257-276.
  • 28. SCHULZE, H.J., 1977, New theoretical and experimental investigations on stability of bubble/particle aggregates in flotation: a theory on the upper particle size of floatability, International Journal of Mineral Processing, 4, 241-259.
  • 29. SCHULZE, H.J., 1982, Dimensionless number and approximate calculation of the upper particle size of floatability in flotation machines, International Journal of Mineral Processing, 9, 321-328.
  • 30. SCHULZE, H.J., 1989, Determination of adhesive strength of praticles within the liquid/gas interface in flotation by means of a centrifuge method, Journal of Colloidal and Interface Science, 128(1).
  • 31. SCHULZE, J.H., 1993, Flotation as a heterocoagulation process: possibilities of calculating the probability of flotation. Coagulation and Flocculation and Applications. Dekker, New York, ed. Dobias, B., 1993, 321-353.
  • 32. TRAHAR, W.J., 1981, A rational interpretation of the role of particle size in flotation, International Journal of Mineral Processing, 1981, 8, 289-327.
  • 33. UÇURUM, M., BAYAT O., 2007, Effects of operating variables on modified flotation parameters in the mineral separation, Separation and Purification Technology, 55 (2), 173-181.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0043-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.