Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 2, nr 3 | 71-84
Tytuł artykułu

A Relationship between 15N NMR Chemical Shifts and Detonation Characteristics of Polynitro Derivatives of Arenes and Polyazaarenes

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The 15N NMR chemical shifts of eighteen polynitro arenes have been determined. The relationships were found and discussed between the characteristics of detonation and thermal decomposition, on the one hand, and 15N NMR chemical shifts of nitrogen atoms of the primarily split off nitro groups, on the other hand. Also the relationships are specified between the 15N NMR chemical shifts in the solid state of some polynitro derivatives of aminopyridines and aminopyrimidines, on the one hand, and squares of their detonation velocities, on the other. It has been stated that the chemical micromechanisms of primary fission processes of molecules of the studied compounds in the initiation by shock should be the same as in the case of their low-temperature thermal decomposition. Also mentioned is relevance of the modified Evans-Polanyi-Semenov relationship. On the basis of the findings presented it also has been stated that the detonation transformation itself of these polynitro compounds should be preceded by an induction period.
Wydawca

Rocznik
Strony
71-84
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Institute of Energetic Materials (IEM), University of Pardubice, CZ-532 10 Pardubice, Czech Republic
  • Deptartment oj Organie Chemistry, University oj Pardubice, CZ-532 10 Pardubice, Czech Republic
Bibliografia
  • [1] Zeman S., A Study of Chemical Micromechanism of the Organie Polynitro Compounds Initiation, in: P. Politzer & J. S. Murray (Eds.), Energetic materials, Part 2, Detonation, combustion, Elsevier B. V. 2003, pp. 25-52.
  • [2] Zeman S., Relationship between the Arrhenius Parameters ofthe Low- Temperature Thermolysis and the l3C and 15N Chemical Shifts ofNitramines, Thermochim. Acta, 1992,202,191-200.
  • [3] Zeman S., The Study of Chemical Micromechanism Goveming Detonation Initiation of Organie Polynitro and Polynitroso Compounds, D.Sc. Thesis, Dept. of Org. Technology, Pragues Inst. ofChemical Technology, Prague, Sept. 1997.
  • [4] Zeman S., Analysis and Prediction oftheArrhenius Parameters of Low- Temperature Thermolysis ofNitramines by Means ofthe 15N NMR spectroscopy, Thermochim. Acta, 1999, 333,121-129.
  • [5] Zeman S., New Aspect ofthe Impact Reactivity ofNitramines, Propellants, Explos., Pyrotech., 2000,25,66-74.
  • [6] Zeman S., Zeman V, Kamensky Z., Relationship between Electric Spark Sensitivity and the NMR Chemical Shifts of Some Organie Polynitro Compounds, Proc. 281h Int. Annual Conf ICT, Karlsruhe, 1997, pp. 6611-66110.
  • [7] Zeman S., Relationship between Detonation Characteristics and 15N NMR Chemical Shifts ofNitramines,J. Energet. Mater., 1999, 17, 305-330.
  • [8] Zeman S., The Study of Chemical Micromechanism of Nitramines Initiation with Utilization of 15N NMR Chemical Shifts, in: Proc. oj the 81h Int. Seminar "New Trends in Research oj Energetic Materials", Univ. Pardubice, Apri12005, pp. 383-394.
  • [9] Anderson K. L., Merwin L. H., Wilson W. S., Facelli 1. C., 15N Chemical Shifts in Energetic Materials: CP/MAS and ab Initio Studies of Aminonitropyridines, Aminonitropyrimidines, and their N-oxides, Int. J. Mol. Sci., 2002, 3, 858-864.
  • [10] Kamlet M. J., Jacobs S. 1., Chemistry of Detonation: Simple Method of Calculation Properties of CHNO Explosives,J Chem. Phys., 1968, 48, 23-29.
  • [11] Zeman S., The Relationship between Differential Thermal Analysis Data and the Detonation Characteristics of Polynitroaromatic Compounds, Thermochim. Acta, 1980,41,199-212.
  • [12] Meyer R, Kohler 1., HomburgA,Explosives, Fifth Ed., Wiley- VCH, Weinheim 2002.
  • [13] Rothstein L. R., Petersen R, Prediction of High Explosive Detonation Velocities from their Composition and Structure, Propellants Explos., 1979, 4, 56.
  • [14] Pepekin VI., Makhov N. M., Lebedev Yu. A, Teploty Vzrychatogo Razlozheniya Individualnykh Vzryvshchatykh Veshchestv (Heats of Explosion of Individual Explosives), DokI. Akad. Nauk SSSR, 1977,230,852-857.
  • [15] Zeman S., Modified Evans-Polanyi-Semenov Relationship in the Study of Chemical Micromechanism Governing Detonation Initiation ofIndividual Energetic MateriaIs, Thermochim. Acta, 2002, 384,137-154.
  • [16] Zeman S., Kinetic Compensation Effect and Thermolysis Mechanism of Organie Polynitro and Polynitroso Compounds, ibid., 1997,290, 199-217.
  • [17] Zeman S., Dimun M., Truchlik S., The Relationship between Kinetic Data ofthe Low- Temperature Thermolysis and the Heats of Explosion of Organie Polynitro Compounds, ibid., 1984, 78, 181-209.
  • [18] Andreev S. G., Babkin A V, Baum F. A, Imkhovik N. A, Kobylkin I. F.,Kolpakov S. V, Ladov V. I., Odintsov V. A, Orlenko L. P., Okhitin V N., Selivanov V. V., Solovev V. S., Stanyukovich K. P., Chelyshev V P., Shekhter B. 1., Fizika vzryva, Tom l (Physics of explosion, Vol. l), Fizmatlit Moscow 2002.
  • [19] Zeman S., Krupka M., New Aspects oflmpact Reactivity of Polynitro Compounds, .Part II. Impact Sensitivity as "the First Reaction" ofPolynitro Arenes, Propellants, Explos., Pyrotech., 2003, 28, 249-255.
  • [20] Zeman S., Possibilities of Applying the Piloyan Method of Determination of Decomposition Activation Energies in the Differential Thermal Analysis of Polynitroaromatic Compounds and of their Derivatives. Part I: Polymethyl and Polychloro Derivatives ofl ,3,5- Trinitrobenzene, J. Thermal Anal., 1979, 17, 19-29.
  • [21] Mamer O. A, Kominar R J., Lossing F. P., Mass SpectraI and Pyrolytic Fragmentation Paths for o-Nitroanisole, Org. Mass. Spectrom., 1970, 3, 1411-1416.
  • [22] Lur'e B. A, Siditskii V P., Smirnov S. P., Termicheskii Raspad 2,4-Dinitrobenzo-furoksana i Nekotorykh ego Soedinenii s Gidroksidami Metallov (Thermal Decomposition of 2,4-Dinitrobezofuroxane and of Some its Compositions with Hydroxides ofMetals), Fiz. Goreniya Vzryva, 2003,39(5),55-64.
  • [23] Semenov N. N., O'Nekotorykh Problemakh Khimicheskoy Kinetiki i Reaktsionnoy Sposobnosti (Some Problems oj Chemical Kinetics and oj Reaction Capability). USSR Acad. Sci., Moscow 1958, pp. 41 and 101; see also German version: Semjonow N. N., Einige Probleme der chemischen Kinetik und Reaktionsjahigkei, Akademie- Verlag, Berlin 1961, pp. 27, 84.
  • [24] Zeman S., Kohlićek P:, Maranda M., Study of Chemical Micromechanism Governing Detonation Initiation of Condensed Explosive Mixtures by Means of Differential Thermal Analysis, Thermochim. Acta, 2003, 398,185.
  • [25] Zeman S., Dimun M., Truc Wik S., Kabatova v., The Relationship between the Kinetic Data of the Low- Temperature Thermolysis and the Heats of Explosion oflnorganic Azides, ibid., 1984, 80,137-141.
  • [26] Zeman S., Dirnun M., Kabatova V, Truchlik S., Correlation of Activation Energies of Low- Temperature Thermolysis and Photolysis of Some Fulroinates with Their Heats ofExplosion, ibid., 1984, 81,359-361.
  • [27] Koshi M., Ye S., Widijaja 1., Tonokura K., Estimation ofShock Sensitivity in Based on Molecular Properties, in: Proc. 41h Int. Sym. on Impact Engineering, Vol. 1, July 2001, Kumamoto, Japan, p. 175.
  • [28] Xiaoyu Hong, Hill J. R, Dlott D. D., Vibrational Energy Transfer in High Explosives: Nitromethane, in: Brill T. B., Russell T. P., Tao W. C., Wardle R. B., (Eds.), Mat. Res. Soc. Symp. Proc., 1995, 418, 357.
  • [29] Haskins P. J., CookM. D., Shock-induced Reactions in Energetic Materials Studied by Molecular Dynamics with Directly Evaluated Quantum Mechanical Potentials, in: API Conference Proc. (1998) 429 (Shock compression oj Cond. Matter) Amherst, USA, July 1997, pp. 305-309.
  • [30] Gilroan J. J., Chemical Reactions at Detonation Fronts in Solids, Phi!. Magazine, 1993, B 71,1057-1061.
  • [31] McNesby K. L., Coffey C. S., Spectroscopic Determination oflmpact Sensitivities of Explosives,J. Phys. Chem., 1997, B 101,3097-3104.
  • [32] Fried L. E., Ruggiero A 1., Energy Transfer Rates in Primary, Secondary and Insensitive Explosives, ibid., 1994,98, 9786-9791.
  • [33] Kuklja M. M., Aduev B. P., Aluker E. D., Krasheninin V 1., Krechetov V G., Mitrofanov A Yu., Role of Electronic Excitations in Explosive Decomposition of Solids,J Appl. Phys., 2001, 89, 4156-4162.
  • [34] Zakharov Yu. A, Aluker E. D., Aduev B. P., Belokurov G. M., Krechetov A G., Predvzryvnye Yavleniya v Azidakh Tyazhe/ykh Metallov (Pre-explosion manifestations in Azides of Heavy Meta/s), Center of Econom. Res. "Khimmashin", Moscow 2002.
  • [35] Zeman S., A New Aspect of Relations between Differential Thermal Analysis Data and the Detonation Characteristics of Po1ynitro Compounds, in: Proc. 29th Int. Annual Conf ICT, Karlsruhe, 1998, pp. 141/1-141/11.
  • [36] Zeman S., Mlynarik v., Goljer I., Dimun M., Explosion Heat Determination, Czech. Pat. 1987, CS 237 661; Chem. Abstr. 1988, J08, 115256.
  • [37] Dremin A. N., O Realnosti Khirnicheskikh Izmenenii Molekulyamykh Kondensirovannykh VV v Protsese Ikh Szhatiya v Udarnom Fronte Detonatsionnoy Volny (About Reality ofChemical Changes ofthe Mo1ecular Condensed Explosives in a Process of their Compression in a Shock Front of the Detonation Wave), Khim. Fiz., 1997, 16, 113-123.
  • [38] Dremin A. N., Toward Detonation Theory, Springer, New York 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0036-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.