Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 2, nr 2 | 29-44
Tytuł artykułu

The Elimination of NO2 from Mixtures of the Nitramines HMX, RDX and CL20 with the Energetic Binder Glycidyl Azide Polymer (GAP) - A Computational Study I

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energetic plasticizer glycidyl azide polymer (GAP) is used for new types of rocket propellants which are formulated with the objective of achieving higher burning rates. The reaction profiles for several possible initial steps in the decomposition of mixtures of the nitramines octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazacyclooctane (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and hexanitrohexaazaisowurtzitane (CL20) with a monomer of GAP-diol have been examined computationally. Comparison of the activation energies for the decomposition of the mixtures with those for the decomposition of the isolated nitramines shows that the presence of GAP-diol decreases the activation energy for the elimination of NO2 by at least to 8 kJ mol-1 for CL20, wheras the NO2 elimination from HMX is only favored by 1 kJ mol-1 and NO2 elimination from RDX is inhibited in the presence of GAP-diol by 2 kJ mol-1.
Wydawca

Rocznik
Strony
29-44
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
autor
  • Fraunhofer Institut für Chemische Technologie, Energetic Materials Stability, Joseph-von-Fraunhofer-Str. 7, D-76327 Pfinztal (Berghausen), Germany, tmk@cup.uni-muenchen.de
Bibliografia
  • [1] Bohn M. A., Dorich M., Aniol J., Pontius H., Gerber P., Reaetivity between E-CL20-GAP and f3-HMX-GAP Investigated by Mass loss, Adiabatie Self Heating and Dynamie Meehanieal Analysis., Proc. Int. Pyrotechnics Seminar 2004, 31st, Fort Collins, Colorado, USA, 11.-16.072004.
  • [2] Bohn M. A., Thermal Ageing ofRoeket Propellant Formulations Containing Epsilon-HNIW (epsilon-CL20) Investigated by Heat Generation Rate and Mass Loss., Thermochim. Acta, 2003, 401,27-41.
  • [3] Bohn M. A., Kempa P. B., Thome V, Exploring ofInteraetions Between the Nitramines RDX, HMX, CL20 and Components in Formulations by Computer Simulation, Int. Annu. Conf. ICT Energetic Materials - Analysis, Diagnostics and Testing 2000, 31st, 63/1-63/19; 27-30.6.2000.
  • [4] Bulusu S., Weinstein D. I., Autera 1. R., Velieky R. w., Deuterium Kinetic Isotope Effeet in theThermal Deeomposition of 1,3 ,5-trinitro-1,3 ,5-triazaeyclohexane and I ,3,5,7-tetranitro-1 ,3,5,7-tetraazaeyclooctane: Its Use as an Experimental Probe for Their Shock-induced Chemistry., J. Phys. Chem., 1986,90,4121-4126.
  • [5] Oxley J. C., Kooh A. B., Szekeres R., Zheng w., Meehanisms of Nitramine Thermolysis., ibid., 1994,98,7004-7008.
  • [6] Palopoli S. F., -Brill T. B., Thermal Deeomposition ofEnergetie Materials. 52. On the F oam Zone and Surfaee Chemistry ofRapidly Decomposing HMX, Combust. Flame, 1991,87,45-60
  • [7] Shacke1ford S. A., Coolidge M. B., Goshgarian B. B., Loving B. A., Rogers R. N., Janney J. L., Ebinger M. H., Deuterium Isotope Effects in Condensed-phase Termoehemical Deeomposition Reactions of Octahydro-I ,3,5,7 -tetranitro-1,3,5, 7- tetrazoeine., ibid., 1985,89,3118-3126.
  • [8] Brill T. B., Karpowicz R. 1., Solid Phase Transition Kinetics. The Role ofIntermolecular Forces in the Condensed-phase Deeomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoeine., ibid., 1982,86,4260-4265.
  • [9] Behrens R. Jr., Identifieation of Octahydro-I ,3,5,7-tetranitro-1 ,3,5, 7-tetrazoeine (HMX) Pyrolysis Products by Simultaneous Thermogravimetric Modulated-beam Mass Speetrometry and Time-of-flight Felocity-spectra Measurements.,Int. J. Chem. Kinet., 1990, 22,135-157.
  • [10] Behrens R. Jr., Deterrnination ofthe Rates ofForrnation ofGaseous Products from the Pyrolysis of Octahydro-I,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) by Simultaneous Therrnogravimetric Modulated-beam Mass Spectrometry., Int. J. Chem. Kinet., 1990, 22,159-173.
  • [11] Behrens Jr. R., Therrnal Decomposition of Energetic Materiais: Temporai Behaviors of the Rates of Forrnation of the Gaseous Pyrolysis Products from Condensed phase Decomposition of Octahydro-l,3,5,7-tetranitro-l ,3,5,7-tetrazocine.,J. Phys. Chem., 1990,94,6708-6718.
  • [12] Behrens Jr. R., Bulusu S., Therrnal Decomposition of Energetic Materials. 2. Deuterium Isotope Effects and Isotopie Scrambling in Condensed-phase Decomposition ofOctahydro-l ,3,5,7 -tetranitro-l ,3,5,7 -tetrazocine., ibid., 1991, 95, 5838-5845.
  • [13] Zhang S., Nguyen H. N., Truong T. N., Theoretical Study of Mechanisms, Thermodynamics, and Kinetics of the Decomposition of Gas-Phase a-HMX (Octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine).,J. Phys. Chem. A, 2003,107,2981- 2989.
  • [14] Lewis J. P., G laesemann K. R., VanOpdorp K., Voth G. A., Ab Initio Calculations of Reactive Pathways for a-Octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (a-HMX)., ibid., 2000,104,11384-11389.
  • [15] Chakraborty D., Muller R. P., Dasgupta S. and. Goddard III W. A, Mechanism for Unimolecular Decomposition ofHMX (l,3,5,7-Tetranitro-l ,3,5,7-tetrazocine), an ab Initio Study., ibid., 2001, 105,1302-1314.
  • [16] Shaw R., Walker F. E., Estimated Kinetics and Therrnochemistry of Some Initial Unimolecular Reactions in the Thermal Decomposition of 1,3,5,7 -tetranitro-I ,3,5,7- tetraazacyclooctane in the Gas Phase.,J. Phys. Chem., 1977,81,2572-2576.
  • [17] Behrens R., Jr., Bulusu S., Therrnal Decomposition of Energetic Materials. 3. TemporaI Behaviors of the Rates of Forrnation of the GaseousPyrolysis Products from Condensed-phase Decomposition of 1 ,3,5-trinitrohexahydro-s-triazine (RDX)., ibid., 1992,96,8877-8891.
  • [18] Wight C. A., Botcher T. R., Therrnal Decomposition of Solid RDX Begins with Mitrogen-nitrogen Bond Scission.,J. Am. Chem. Soc., 1992, 114,8303-8304.
  • [19] Behrens R., Jr., Bulusu S., Therrnal Decomposition of Energetic Materials. 4. Deuterium Isotope Effects and Isotopie Scrambling (HID, 13C1180, 14N115N) in Condensed-phase Decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX)., J. Phys. Chem., 1992,96,8891-8897.
  • [20] Zhao x., Hintsa E. J., Lee Y. T., Infrared Multiphoton Dissociation ofRDX (hexahydro-1,3,5-trinitro-l,3,5-triazine) in a Molecular Beam., ibid., 1988,88,801-810.
  • [21] Wu C. J., Fried L. E., Ab Initio Study of RDX Decomposition Mechanisms., ibid., 1997,101,8675-8679.
  • [22] Chakraborty D., Muller R. P., Dasgupta S., Goddard III W. A., The Mechanism for Unimolecular Decomposition ofRDX (l,3,5-Trinitro-l,3,5-triazine), an ab Initio Study., J. Phys. Chem. A, 2000, 104,2261-2272.
  • [23] Harris N. J., Lammertsma K., Ab Jnitio Density Functionał Computations of Conformations and Bond Dissociation Energies for Hexahydro-l ,3,5-trinitro-l ,3,5-triazine.,J. Am. Chem. Soc., 1997, 119,6583-6589.
  • [24] Nedelko V. v., Chukanov N. v.. Raevskii A v., Korsounskii B. L., Larikova T. S., Kolesova 0.1., Volk F., Comparative Investigation of Thermal Decomposition of Various Modifications ofHexanitrohexaazaisowurtzitane (CL-20)., Pro peli. Explos. Pyrotech., 2000, 25, 255-259.
  • [25] Patił D. G., Brill T. B., Thermal Decomposition of Energetic Materials, 53. Kinetics and Mechanism of Thermolysis of Hexanitrohexazaisowurtzitane., Combust. Flame, 1991,87,145-151.
  • [26] Lobbecke S., PhD. Thesis, Philipps-Universitat Marburg 1999.
  • [27] Lobbecke S., Bohn M. A., Pfeil A., Krause H., Thermal Behavior and Stability of HNlW (CL20), 29th Jnt. Annual Conf. oJJCT, Karlsruhe 1998.
  • [28] M. A. Bohn, Kinetic Description of Mass Loss Data for the Assessment of Stability, Compatibility and Aging ofEnergetic Components and Formulations Exemplified with E-CL20., Pro peli. Explos. Pyrotech., 2002, 27, 125-135.
  • [29] Patil D. G., Brill T. B., Thermal Decomposition of Energetic Materials. 59. Characterization ofthe Residue ofHexanitrohexaazaisowurtzitane., Combust. Flame, 1993,92,456-458.
  • [30] Ryzhkov L. R., McBride l M., Low- Temperature Reactions in Single Crystals of Two Polymorphs ofthe Polycyc1ic Nitramine 15N-HNIW. J. Phys. Chem., 1996, 100,163-169.
  • [31] Ryzhkov L. R., McBride l M., Structure, Motion, and Exchange Coupling of 15N02/ /15N02 Radical Pairs OccupyingAdjacent Solvent Cavities of a-HNIW, a Nitramine Hydrate.,J. Am. Chem. Soc., 1997, 119,4826-4833.
  • [32] Pace M. D., EPR Spectra ofPhotochemical Nitrogen Dioxide Formation in Monocyclic Nitramines and Hexanitrohexaazaisowurtzitane.,J Phys. Chem., 1991, 95, 5858-5864.
  • [33] Okovytyy S., Kholod Y, Qasim M., Fredrickson H., Leszynski l, The Mechanism of Unimolecular Decomposition of 2,4,6,8, l O, 12-Hexanitro-2,4,6,8, l O, 12-hexaazaisowurtzitane. A Computational DFT Study, J Phys. Chem. A, 2005, 109, 2964-2970.
  • [34] Frisch M. l, Trucks G. w., Schlegel H. B., Scuseria G. E., Robb M. A, Cheeseman l R., Zakrzewski V. G., lA M. Jr., Stratmann R. E., BurantJ. c., Dapprich S., Millam l M., Daniels A, D., Kudin M. C. S. K. N., Farkas O., Tomasi l, Barone v., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski l, Petersson G. A., Ayala P. Y, Cui Q., Morokuma K., Malick D. K., RabuckA D., Raghavachari K., Foresman l B., Cioslowski l, Ortiz J. V.,BabouI A G., Stefanov B. B., Liashenko A, Liu G., Piskorz P., Komaromi 1., Gomperts R., Martin R. L., Fox D. l, Keith T., Al-Laham M. A., Peng C. Y, Nanayakkara A, Gonzalez C., Challacombe M., Gili P. M. w., Johnson B., Chen w., Wong M. w., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., PopIe l A., Gaussian98, RevisionA8, Pittsburgh PA 1998.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0036-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.