Warianty tytułu
Języki publikacji
Abstrakty
Nanostructured spherical spinel lithium manganate with about 30 nm in diameter was synthesized for the first time by explosive method. The water-solubility explosive was prepared using a simple facility at room temperature. The growth of lithium manganate via detonation reaction was investigated with respect to the presence of an energetic precursor, such as the metallic nitrate and the degree of confinement of the explosive charge. The detonation products were characterized by scanning electron microscopy. Powder X-ray diffraction and transmission electron microscopy were used to characterize the products. Lithium manganate with spherical morphology and more uniform secondary particles, with smaller primary particles of diameters from 10 to 50 nm and a variety of morphologies were found. Lithium manganate with a fine spherical morphology different from that of the normal spinel is formed after detonation wave treatment due to the very high quenching rate. It might also provide a cheap large-scale synthesis method. Explosive detonation is strongly nonequilibrium processes, generating a short duration of high pressure and high temperature. Free metal atoms are first released with the decomposition of explosives, and then theses metal and oxygen atoms are rearranged, coagulated and finally crystallized into lithium manganate during the expansion of detonation process.
Rocznik
Tom
Strony
15-25
Opis fizyczny
Bibliogr. 22 poz.
Bibliografia
- [1] Singhal A., Skandan G., Amatucci G., Badway F., Ye N., Manthiram A., Ye H., Xu I. J., Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices, J. Power Sources, 2004, 729(1), 38-44.
- [2] Ma S. H., Noguchi H., Yoshio M., An Observation of Peak Split in High Temperature CV Studies on Li-stoichiometric Spinel LiMn2O4 Electrode, ibid., 2004, 125(2), 228-235.
- [3] Morcrette M., Barboux P., Perrie're J., Brousse T., LiMnzO4 Thin Films for Lithium Ion Sensors, Solid St. Ionics, 1998, 772(3-4), 249-254.
- [4] Tabuchi M., Masquelier C., Kobayashi H., Kanno R., Kobayashi Y, Akai T, Maki Y, Kageyama H., Nakamura O., Characterization of Li1-δMnn2-2δO4 Defect Spinel Materials by Their Phase Transition, Magnetic and Electrochemical Properties, Power Sources, 1997, 68(2), 623-628.
- [5] Kim J. U., Jeong I. S., Moon S. I., Gu H. B., Electrochemical Characteristics of LiMn2O4-polypyrrole Composite Cathode for Lithium Polymer Batteries, ibid, 2001,97-95,450-453.
- [6] Davidson I. J., McMillan R. S., Slegr H., Luan B., Kargina 1., Murray J. J., Swainson I. P., Electrochemistry and Structure of Li2-xCry,Mn2-y.O4 Phases, ibid, 1999,81-82, 406-411.
- [7] Komaba S., Myung S. T., Kurnagai N., Kanouchi T, Oikawa K., Kamiyama T, Hydrothermal Synthesis of High Crystalline Orthorhombic LiMnO2 as A Cathode Material for Li-ion Batteries,, Solid St. Ionics, 2002, 752-755, 311-318.
- [8] Liu Z. Q., Wang W. L., Liu X. M., Wu M. C., Li D., Zeng Z., Hydrothermal Synthesis of Nano structured Spinel Lithium Manganese Oxide, J. Solid St. Chem.,2004,777(4-5), 1585-1591.
- [9] Zukas J. A., Walters W. P., Explosive Effects and Applications, Springer-Verlag New York, 1998, p. 124.
- [10] Berbenni V., Marini A., Solid State Synthesis of Lithiated Manganese Oxides from Mechanically Activated Li2CO3-Mn3O4 Mixtures, J. Analyt. Appl Pyrolysis, 2003, 70(2) 437-456.
- [11] Lin X. M., Li L. P.. Li (i. S., Su W. 11.. Transport Property and Raman Spectra of Nanocrystalline Solid Solutions Ceu.MNdo.2O2-δ with Different Particle Size, Mater. Chem. Phys., 2001, 69(1-3), 236-240.
- [12] Piszora P., Callow C. R. A., Woodley S. M., Wolska E., Relationship of Crystal Structure to Interionic Interactions in the Lithium-manganese Spinel Oxides, Comp. Chem., 2000, 24(5) 609-613.
- [13] Julien C. M., Massot M., Lattice Vibrations of Materials for Lithium Rechargeable Batteries III. Lithium Manganese Oxides, Mater. Sc. Eng. B, 2003, 100(1), 69-78.
- [14] Troyanov S. I., Tsvigunov A. N., Khotin V. G., PuzyrevaT. B., Detonation Synthesis and Crystal Structure of Six-Layer Silicon Carbide, Glass and Ceramics, 2000, 57(7-8), 241-242.
- [15] Kim M, K., Chung H. T., Urn W. S., Park Y. 1, Kim J. G., Kim H. G., A Study on the Capacity Loss with Cycling in Li/LiAMn2O4 Cell, Materials Letters, 1999, 59(3), 133-137.
- [16] Kim Y. S., No K. S., Chung K. S., Lee J. C., Ooi K., Li+ Extraction Reactions with Spinel-type LiMo.5Mn1.5O4 (M=Ti, Fe) and Their Electronic Structures, ibid, 2003, 57(26-27), 4140-4146.
- [17] Sugiyama J., Atsumi T., Hioki T., Noda S., Kamegashira N., Nonstoichiometry and Defect Structure of Spinel LiMn2O4-δ J. Power Sources, 1997, 68(2) 641-645.
- [18] Xia Y. Y., Takeshige H., Noguchi H., Yoshio M., Studies on an Li—Mn—O Spinel System (obtained by melt-impregnation) as a Cathode for 4 V Lithium Batteries Part 1. Synthesis and Electrochemical Behaviour of LuMn2O4, ibid., 1995, 5(5(1),61-67.
- [19] Massarotti V., Capsoni D., Bini M., Stability of LiMn2O4 and New High Temperature Phases in Air, O2 and N2. Solid St. Commun., 2002, 722(6), 317-322.
- [20] Cao J. M., Ji. H. M., Liu J. S., Zheng M. B., Chang X., Ma X. J., Zhang A. M., Xu Q. H., Controllable Syntheses of Hexagonal and Lamellar Mesostructured Lanthanum Oxide, Materials Letters, 2005, 59(4), 408-411.
- [21] Chitrakar R., Kanoh H., Miyai Y, Ooi K., Synthesis of o-LiMnO2 by Microwave Irradiation and Study Its Heat Treatment and Lithium Exchange, J. Solid St. Chem., 2002, 763(1), 1-4.
- [22] Shin Y. J., Capacity fading mechanisms and origin of the capacity above 4.5 V of spinel lithium manganese oxides, The University of Texas at Austin, Doctoral Dissertation 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT1-0036-0009