Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | T. 4, nr 3-4 | 301-322
Tytuł artykułu

Biomonitoring zanieczyszczeń środowiska

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Biomonitoring of environmental pollution
Języki publikacji
PL
Abstrakty
PL
W pracy dokonano przeglądu metod biologicznych stosowanych w monitoringu zanieczyszczeń środowiska. W pierwszej części pracy podano ogólne informacje dotyczące klasyfikacji metod biologicznych ze szczególnym uwzględnieniem biowskaźników i biomonitorów oraz omówiono kryteria pomocne przy ich wyborze. Następnie podano przykładowe zastosowanie roślinności (mchów, porostów, części drzew) oraz bioty (planktonu, małży, ludzkich włosów) do określania stopnia zanieczyszczenia środowiska. Przedstawiono również istotę immunoanalizy i przykłady zastosowania tej techniki w analizie środowiskowej ze szczególnym uwzględnieniem stosowania testu ELISA do oznaczania pestycydów w różnego typu wodach. W ostatniej części pracy omówiono zasadę działania i klasyfikację bioczujników oraz podano przykłady ich zastosowania do oceny stopnia zanieczyszczenia środowiska pestycydami.
EN
Over the last few years, a rapid increase in the application of biological methods in monitoring and analysis of environmental pollutants has been observed. This trend is due to advantages of biological methods over classical methods of analysis. These advantages include: high specificity resulting from their biological principle of operation, rapidity and low cost, especially when used for biomonitoring, and possibility of use in portable equipment or in field measurements. The review presents the application of biological methods in monitoring of environmental pollution. In the first part, the general classification of biological methods, especially bioindicators and biomonitors and criteria for their selection is presented. Natural indicators do not require any particular knowledge of flora and fauna, and moreover this method allows the estimation of environmental pollution over a large area and in a short time. The examples of application of plants (mosses, lichens, trees and their parts) and living matter - biota (algea, molusk, human hair) for evaluation of a pollution degree are given. Also, the principle and significance of immunoanalysis and examples of its use in environmental analysis were described. Immunoassay can potentially be used in the on-line mode for continuous monitoring of water pollution. Such devices can be very useful for the control of municipal water treatment processes or for the in situ monitoring of level of organic pollutants in rivers. Presently, immunoassay kits are commercially available from several manufactures. The paper presents the examples of the most commonly used method - the ELISA test - in the analysis of water pollution, especially for the determination of pesticides. In the last part, the principle of biosensors, their classification and the examples of application for assessing of a pollution degree of the environment is presented. Biosensors due to their specificity, short response time, low cost, and portability are finding an increasingly wider applicability in environmental analysis. However, great expectations associated with their use in measurements in situ or on-line, thus avoiding the sampling step, have not been completely fullfilled yet. Biosensors can be used in situations when pollutants are known or have been identified previously. Under such circumstances, monitoring of pollutants can be carried out reliably and inexpensively. The review considers the advantages and disadvantages of all discussed biological methods.
Wydawca

Rocznik
Strony
301-322
Opis fizyczny
Bibliogr. 76 poz., rys.
Twórcy
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Chemii Analitycznej, ul. Narutowicza 11/12, 80-952 Gdańsk
  • Politechnika Gdańska, Wydział Chemiczny, Katedra Chemii Analitycznej, ul. Narutowicza 11/12, 80-952 Gdańsk
Bibliografia
  • [1] Waller W.T., Cairns J.C., Use of fish movement patterns to monitor zinc water, Water Res. 1972, 6, 257-269.
  • [2] Kress C., Nachtigall W., Monitoring of harmful substances in running water by behavior parameters in continously swimming fish, Z. Wasser-Abwass. Forsch. 1989, 22, 99-107.
  • [3] Botterweg J., Van der Guchte C., Van Breemen L.W.C.A., Bio-alarm systems: a supplement to traditional monitoring of water quality, H20 1989, 22, 778794.
  • [4] Hendriks A.J., Stouten M.D.A., Monitoring the response of microcontaminats by dynamic Daphnia magna and Leuciscus idus assays in the Rhine delta: Biological early warning as a useful supplement, Ecotoxic. Environ. Safety 1993, 26, 265-279.
  • [5] Gruber D., Cairns J. Jr., Industrial effluent monitoring incorporating a recent automated fish biomonitoring system, Water Air Soil Pollut. 1981, 15, 471-481.
  • [6] Evans J.P., Wallwork J.P., (w:) Automated Biomonitoring, eds. Gruber, Diamond 1988, 75-90.
  • [7] Diamond J.M., Parson M.J., Gruber D., Rapid detection of sublethal toxicity using fish ventilatory behavior, Environ. Toxicol. Chem. 1990, 9, 3-11.
  • [8] Geller W., A toxicity warning monitor using the weakly electric fish, Gnathonemus, Water Research 1984,10, 1285-1290.
  • [9] Lewis J.W., Campbell P.R., Toms L.P., Microcomputer-based monitoring of the effect of phenol on electric organ activity in the mormyrid fish, Gnathonemus petersi, Environ. Technol. 1990, 11,571-584.
  • [10] Thomas M., Chretien D., Florion A., The effect of pH and conductivity on the electric behavior of Apteronotus albifrons (family apteronatide) in a pollution monitoring system, Environ. Technol. 1997, 18, 1069-1083.
  • [11] Sloof W., De Zwart D., Marquenie, J-М., Bioindicators and chemicals pollution of surface waters, Bull. Environ. Contamin. Toxicol. 1983, 30, 400-408.
  • [12] Ham K.D., Peterson M.J., Effect of fluctuating low-level chlorine concentration onvalve- movement behavior of the Asiatic clam (Corbicula fluminea), Environ. Toxicol. Chem. 1994, 13,493-498.
  • [13] Krämer K.J.M., Jenner H.A., de Zwart D., The valve movement response of mussels: a tool in biological monitoring, Hydrologia 1989, 188/189, 433-443.
  • [14] Akberali H.B., Black J.E., Behavioral responses of the bivalve Scrobicularia plana (da Costa) subjected to short-term copper(II) concentrations, Mar. Environ. Res. 1980-1981, 4, 97-107.
  • [15] Mouabad A., Pihan J-С., Le test comportemental de Dreissena polymorpha: un outil biologique de prevision et d’evaluation de la toxicite en milieu d’eau douce, Hydroecologie Appliquee 1993, 5, 97-109.
  • [16] Kawecka В., Zarys ekologii glonów wód słodkich i środowisk lądowych, WN PWN, Warszawa 1994.
  • [17] Jankowski W., Zastosowanie bioindykacji w praktyce monitoringu środowiska na przykładzie północno-wschodniej Polski, Biblioteka Monitoringu Środowiska, Warszawa 1994.
  • [18] Äyräs M., Niskavaara H., Bogatyrev I., Chekuskin V., Pavlov V., de Caritat P., Halleraker J.K., Finne T.E., Kashulina G., Reimann C., Regional patterns of heavy metals and sulphur in terrestial moss samples as indication of airborne pollution in a 188,000 km2 area in northern Finland, Norway and Russia, J. Geochem. Explor. 1997, 58, 269-281.
  • [19] Palmieri F., Neri R., Benco C., Serracca L., Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring, J. Environ. Path. Toxicol. Oncol. 1997, 16, 175-190.
  • [20] Juichang R., Freedman B., Coles C., Zwicker В., Holtzbecker J., Chatt A., Vanadium contaminants in lichens and tree foliage in the vicinity of tree oil-fired power plants in eastern Canada, J. Air Waste Manag. Assoc. 1995, 45, 461-464.
  • [21] Sloof J.E., Lichens as quantitative biomonitors for atmospheric trace-element deposition using transplants, Atmos. Environ. 1995, 29, 11-20.
  • [22] Eklund M., Cadmium and lead deposition around a Swedish battery plant as recorded in oak tree rings, J. Environ. Qual., 1995, 24, 126-131.
  • [23] Sinkkonen S., Veijanen A., Paasivitra J., Lahtipera M., Chlorinated short chain aliphatic hydrocarbons in pine needles by purge and trap gas chromatography/mass spectrometry, Chemosphere 1995, 30, 2343-2352.
  • [24] Juuti S., Norokorpi Y., Helle T., Ruuskanen J., Trichloroacetic acid in conifer needles and arboreal lichens in forest environments, Sei. Total Environ. 1996, 180, 117-124.
  • [25] Thompson T.S., Treble R.G., Use of pine needles as an indicator of atmospheric contamination by pentachlorophenol, Chemosphere 1995, 31,4387-4392.
  • [26] Knulst J.C., Westling H.O., Brorstroem-Lunden E., Airborne organic micropollutants concentration in mosses and humus as indicators for local versus long-range sources, Environ. Monit. Asses. 1995, 36, 75-91.
  • [27] Sinkkonen S., Kamarainenn N., Paasivirta J., Lammi R., PCDDs, PCDFs, PCDTs, PCBs and some other organochlorine compounds in pine needles exposed to pulp and paper mill emission and effects of waste combustion on the concentration, Chemosphere 1997, 35, 2193-2202.
  • [28] Ravera O., Giannoi L., Plankton as an indicator of the temporal variation of the Chernobyl fallout, Sei. Total Environ. 1995, 172, 119-125.
  • [29] Falandysz J., Rappe C., Spatial distribution in plankton and bioaccumulation features of polychlorinated naphthalenes in a pelagic food chain in southern port of the Baltic proper, Environ. Sei. Technol. 1996, 30, 3362-3370.
  • [30] Oh Y.-К., A comparative study on environmental radioactivity in shellfish inhabiting the coasts of Korea and Japan, Radioanal. Nuci. Chem. 1994, 188, 313-321.
  • [31] Lauenstein G.G., Comparison of organic contaminants found in mussels and oysters from a current mussel watch project with those from archived mollusk of the 1970’s, Mar. Pollut. Bull. 1995, 30, 826-833.
  • [32] Srivasta A.K., Gupta B.N., Bihari V., Gaur J.S., Matur N., Hair selenium as a monitoring tool for occupational exposures in relation to clinical profiles, J. Toxicol. Environ. Health 1997, 51, 437-445.
  • [33] Górna-Binkut A., Chromatograficzne badania procesów sorpcji wybranych zanieczyszczeń organicznych w układzie powietrze-matryca biologiczna, praca doktorska, UMK, Toruń 1998.
  • [34] Yallow R.S., Berson S.A., Radiobiology - Assay of plasma insulin in human subjects by immunological methods, Nature 1959, 184, 1648-1651.
  • [35] Ercegovich C.D., Analysis of pesticides residue: immunological techniques, (w:) Pesticides identification at the residue level, ed. R.F. Gold, American Chemical Society, Washington, D.C. 1971.
  • [36] Sherry J., Environmental chemistry: the immunoassay option, Crit. Rev. Anal. Chem. 1992, 23, 217-300
  • [37] Sherry J., ChemosEnvironmental immunoassays and other bioanalytical methods: overview and update, Chemosphere 1997, 34, 1011-1025.
  • [38] Knopp D., Application of immunological methods for the determination of environmental pollutants in human biomonitoring, A Review, Anal. Chim. Acta 1995, 311, 383-392
  • [39] Gerlach R.W., White R.J., O’Leary D., van Emon J.M., Field evaluation of an immunoassay for benzene, toluene and xylenes (BTX), Wat. Res. 1997, 31, 941-945.
  • [40] Marco M.P., Gee S., Hammock B.D., Immunochemical techniques for environmental analyses. I. Immunosensors, Trends Anal. Chem. 1995, 14, 341-350.
  • [41] Marco M.P., Gee S., Hammock B.D., Immunochemical techniques for environmental analyses. II, Antibody production and immunoassay development, Trends Anal. Chem. 1995, 14, 415-425.
  • [42] Walsh G., Headon D.R., Protein biotechnology, John Wiley & Sons, 1996.
  • [43] Meulenberg E.P., Mulder W.H., Stoks P.G., Immunoassays for pesticides, Environ. Sei. Technol. 1995, 29, 553-561.
  • [44] Watts C.D., Hegarty В., Use of immunoassays for the analysis of pesticides and some more other organic in water samples, Pure Appl. Chem. 1995, 67, 1533-1548.
  • [45] RaPID assay environmental user’s guide, OHMICRON.
  • [46] Amistadi M.K., Hall J.K., Bogus E.R., Mumma R.O., Comparison of gas chromatography and immunoassay methods for the detection of atrazine in water and soil, J. Environ. Sei. Health В 1997, 32, 845-860.
  • [47] Knopp A., Knopp D., Niessner R., ELISA Determination of the Sulfonylurea Herbicide Metsul- furon-Methyl in Different Water Types, Environ. Sei. Technol. 1999, 33, 358-361.
  • [48] Kelley M.M., Zahnow, Petersen E.W., Toy S.T., Chlorsulfuron determination in soil extracts by enzyme immunoassay, J. Agric. Food Chem. 1985,43, 962-965.
  • [49] Ghildyal R., Kariofillis M., Polyclonal antibody - based ELISA for triasulfuron, Bull. Environ. Contam. Toxicol. 1995, 54, 647-653.
  • [50] Brady J.F., Turner J., Skinner D.H., Application of a triasulfuron enzyme immunoassay to the analysis of incurred residues in soil and water samples, J. Agric. Food Chem. 1995, 43, 2542-2547.
  • [51] Wardencki W., Namieśnik J., Bioczujniki w monitoringu środowiska, Mat. V Konf. Nauk. Czujniki Optoelektroniczne i Elektroniczne, Jurata, 10-13.05.1998.
  • [52] Camman K., Lemke U., Rohen A., Sander J., Wilken H., Winter B., Chemical sensors and biosensors - principles and applications, Angew. Chem. Int. Ed. Engl. 1991, 30, 516-539.
  • [53] Vadgama P., Crump P.W., Biosensors: recent trends, A Review, Analyst 1992, 117, 1657-1670.
  • [54] Alvarez-lcaza M., Bilitewski U., Mass production of biosensors, Anal. Chem. 1993, 65, 525A-533A.
  • [55] Brzózka Z., Wróblewski W., Sensory chemiczne, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1998.
  • [56] Wittmann C., Biosensors for environmental analysis. Part 1, CLB Chemie in Labor und Biotechnik 1995, 46, 433-436.
  • [57] Tapuhi E., Venter E.A., Kfir R., Trends in biosensor development and some potential applications, S. Afri. Tydskr. Chem. 1996,49, 8-25.
  • [58] Dennison M.J., Turner PF., Biosensorsfor environmental monitoring, Biotech. Adv. 1995, 65, 1-12.
  • [59] Turner A.P.F., Biosensors: realities and aspirations, Ann. Chim. 1997, 87, 255-260.
  • [60] Rogers K.R., Biosens. Bioelectron. 1995, 10, 533-541.
  • [61] Osbild D., Babut M., Vasseur P., Rev. Sei. Eau 1995, 8, 505-538.
  • [62] Scheper T.H., Hilmer J.M., Lammers F., Muller C., Reinrcke M., Biosensors in bioprocess monitoring, J. Chromatogr. 1996, 725, 3-12
  • [63] Marty J.L, Sode K., Karube L, Biosensor for detection of organophosphate and carbamate insecticides, Electroanalysis 1992,4,249-252.
  • [64] Skladal P., Mascini M., Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immunomobilized cholinoesterases, Biosens. Bioelectron. 1992, 7, 335-343.
  • [65] Bernabei M., Chiavarini S., Cremisini C., Palleschi G., Anticholinoesterase activity measurement by a choline biosensor: Application in water analysis, Biosens. Bioelectron. 1994, 8, 265-271.
  • [66] Palleschi G., Mascini M., Bernarbei M., Cremisini C., Palleshi G., Determination of organo- phosphorus insecticides with a choline electrochemical biosensor, Sensors and Actu. B. 1992, 7, 513-517.
  • [67] Wang J., Fang L., Lopez D., Amperometric biosensor for phenols based on a tyrosinase- graphite-epoxy biocomposite, Analyst 1994, 119, 455-458.
  • [68] Ngeh-Ngwainibi J., Foley P.M., Kuan S.S., Guibalt G.G., Parathion antibodies on piezoelectric crystals, J. Am. Chem. Soc. 1986,108, 5444-5447.
  • [69] Guibault G.G., Luong J.H., Biosensors - current status and future possibilities, J. Chimia 1988, 42, 267-271.
  • [70] Scheper T.H., Mueller C., Anders K.D., Eberhardt F., Ploetz F., Schelp C., Thordsen O., Schuegerl K., Optical sensors for biotechnological applications, Biosens. Bioelectron. 1994, 9, 73-83.
  • [71] Guibault G.G., Hock B., Schmid R., A piezoelectric immunobiosensors for atrazine in drinking water, Biosens. Bioelectron. 1992, 7, 411-419.
  • [72] Ziegler C., Review: Cell-based biosensors, Fresenius J. Anal. Chem. 2000, 366, 552-559.
  • [73] Rawson D.M., Willmer A.J., Turner A.P.F., Whole-cell biosensors for environmental monitoring, Biosens. Bioelectron. 1989, 11, 299-304.
  • [74] Peter J., Hutter W., Stollnberger W., Hampel W., Detection of chlorinated and brominated hydrocarbons by an ion sensitive whole cell biosensor, Biosens. Bioelectron. 1996, 11, 1215-1219.
  • [75] Reshetilov A.N., Iliasov P.V., Donova M.V., Dovbnya D.V., Boronin A.M., Leathers T.D., Greenie R.V., Evaluation of a Gluconobacter oxydants whole cell biosensor for amperometric detection of xylose, Biosens. Bioelectron. 1997, 12, 241-247.
  • [76] Draper W.M., Biological monitoring: exquisite research probes, risk assessment and routine exposure measurement, Anal. Chem. 2001, 73, 2745-2790.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0027-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.