Warianty tytułu
Kompozyty ceramiczne wzmacniane włóknami: stan badań, wyzwania i perspektywy
Języki publikacji
Abstrakty
Ceramic matrix composites (CMCs) are non-brittle structural ceramics for application at high temperatures. They consist of ceramic fibers embedded in a ceramic matrix, the fiber/matrix bonding being controlled through weak enough interphase. CMCs are processed following gas, liquid or powder routes. Their main properties are presented and discussed, including mechanical behavior, thermal conductivity, dimensional stability, friction and the effects of an oxidizing atmosphere or nuclear radiations. Finally, the applications of CMCs are briefly presented in rocket motors, spacecraft thermal protection, aerojet engines and cogeneration gas turbines, braking systems and high temperature nuclear reactors.
Kompozyty o osnowie ceramicznej (CMCs) są niekruchymi konstrukcyjnymi materiałami ceramicznymi stosowanymi w wysokich temperaturach. Składają się z włókien ceramicznych otoczonych ceramiczną osnową, przy czym o wiązaniu włókien z osnową decyduje odpowiednio słaba faza pośrednia. Kompozyty te wytwarza się metodami wykorzystującymi fazę gazową, fazę ciekłą albo technologie proszkowe. Zaprezentowano i omówiono ich podstawowe właściwości, do których należą właściwości mechaniczne, przewodność cieplna, stabilność wymiarowa, tarcie i wpływ atmosfery utleniającej oraz promieniowania jądrowego. Na koniec przedstawiono pokrótce zastosowania CMCs w silnikach rakietowych, osłonach termicznych statków kosmicznych, silnikach odrzutowych i turbinach gazowych, w układach hamulcowych i w wysokotemperaturowych reaktorach jądrowych.
Czasopismo
Rocznik
Tom
Strony
3-18
Opis fizyczny
Bibliogr. 117 poz., rys.
Twórcy
autor
- University Bordeaux 1, Laboratory for Thermostructural Composities, 3 Allee de La Boetie, 336000 Pessac, France
Bibliografia
- [1] Aveston J., Cooper G.A., Kelly A., Single and multiple fracture, (w:) The properties of composites, IPC Science and Technolgy Press, Guildford (UK) 1971, 15-26.
- [2] Warren R., Ceramic Matrix Composites, Blackie, Glasgow 1992.
- [3] Chawla K.K., Ceramic Matrix Composites, Chapman & Hall, London 1993.
- [4] Evans A.G., Perspective on the development of high toughness ceramics, J. Amer. Ceram. Soc. 1990, 73, 187- 206.
- [5] Naslain R., The design of the fibre-matrix interfacial zone in ceramic matrix composites, Composites Part A 1998, 29 A, 1145-1155.
- [6] Kerans R.J., Hay R.S., Parthasarathy T.A., Cinibulk M.K., Interface design for oxidation resistant ceramic composites, J. Amer. Ceram. Soc. 2002, 85, 11, 2599-2632.
- [7] Lamicq P.J., Bernhart G.A., Dauchier M.M., Mace J.G., SiC/SiC composite ceramics, Ceram. Bull. 1986, 65, 336- 338.
- [8] Marshall D.B., Evans A.G., The mechanical behavior of ceramic matrix composites, Acta Metall. Mater. 1989, 37, 10, 2567-2583.
- [9] Baxter D.J., Fordham R.J., The oxidation and corrosion behavior of non-oxide ceramic matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.08, Elsevier, Amsterdam 2000, 221-264.
- [10] Naslain R., Guette A., Rebillat F., Le Gallet S., Lamouroux F., Filipuzzi L., Louchet C., Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents, J. Mater. Sci. 2004, 39, 7303-7316.
- [11] Naslain R., Langlais F., CVD-processing of ceramicceramic composite materials, (in:) Tailoring Multiphase and Composite Ceramics, eds. R.E. Tressler et al., Mater. Sci. Research 1986, 20, 145-164, Plenum Press, New York.
- [12] Naslain R., CVI composites, Chap. 8, 199-244, in ref. [2].
- [13] Naslain R., Pailler R., Bourrat X., Vignoles G., Processing of ceramic matrix composites by pulsed-CVI and related techniques, Key Engineering Mater., Vol. 159-160, eds. H. Suzuki et al., Trans. Tech. Publ. Uetikon-Zurich 1999, 359-366.
- [14] Golecki J., Morris R.C., Clements N., Rapid densification of carbon-carbon composites by thermal-gradient chemical vapor infiltration, Ceram. Trans. 1995, 58, 231-236.
- [15] Besmann T.M., Sheldon B.W., Lowden R.A., Stinton D.P., Vapor-phase fabrication and properties of continuous- -filament ceramic composites, Science 1991, 253, 1104- 1109.
- [16] David P., Narcy B., Lulewicz J.D., Ravel F., Schumann S., Elaboration of ceramic composites by rapid densification, Proc. ICCM-10, eds. A. Poursartip, K.N. Street, Vol. 4, Woodhead Publ., Abington/Cambridge, UK 1995, 611-616.
- [17] Narcy B., Guillet F., Ravel F., David P., Characterization of carbon-carbon composites elaborated by a rapid densification process, Ceram. Trans. 1995, 58, 237-242.
- [18] Hay R., Sol-gel coating of fiber tows, Ceram. Eng. Sci. Proc. 1991, 12, 7-8, 1064-1074.
- [19] Interrante L.V., Whitmarsh C.W., Sherwood W., Fabrication of SiC matrix composites using a liquid polycarbosilane as the matrix source, Ceram. Trans. 1995, 58, 111- 118.
- [20] Casadio S., Donato A., Nannetti C.A., Ortona A., Rescio M., Liquid infiltration and pyrolysis of SiC matrix composite materials, Ceram. Trans. 1995, 58, 193-198.
- [21] Sato K., Morozumi H., Tezuka A., Funayama O., Isoda T., Interface and mechanical properties of ceramic fiber reinforced silicon nitride composites prepared by a preceramic polymer impregnation method, Ceram. Trans. 1995, 58, 199-204.
- [22] Yajima S., Hasegawa Y., Hayashi J., Imura M., Synthesis of continuous silicon carbide fibre with high tensile strength and high Young’s modulus, Part 1. Synthesis of polycarbosilane as precursor, J. Mater. Sci. 1978, 13, 2569- 2576.
- [23] Interrante L.V., Moraes K., MacDonald L., Sherwood W., Mechanical, thermal and microstructural characterization of AHPC S-derived SiC, Ceram. Trans. 2002, 144, 125-140.
- [24] Sherwood W.J., CMCs come down to earth, Amer. Ceram. Soc. Bull. 2003, 82, 8, 25-27.
- [25] Luthra K.L., Singh R.N., Brun M.K., Toughened silcomp composites-process and preliminary properties, Amer. Ceram. Soc. Bull. 1993, 72, 7, 79-85.
- [26] Corman G.S., Brun M.K., Luthra K.L., SiC fiber reinforced SiC-Si matrix composites prepared by melt infiltration (MI) for gas turbine engine applications, Int. Gas Turbine and Aeroengine Congress and Exhibition, June 7-10, 1999, ASME, New York.
- [27] Prewo K.M., Brennan J.J., Layden G.K., Fiber reinforced glasses and glass-ceramics for high temperature applications, Amer. Ceram. Soc. Bull. 1986, 65, 2, 305-313, 322.
- [28] Prewo K.M., Brennan J.J., Silicon carbide yarn reinforced glass matrix composites, J. Mater. Sci. 1982, 17, 1201- 1206.
- [29] Brennan J.J., Prewo K.M., Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness, J. Mater. Sci. 1982, 17, 2371-2383.
- [30] Guo J.K., Mao Z-Q., Bao C-D., Wang R-H., Yan D-S., Carbon fibre-reinforced silicon nitride composite, J. Mater. Sci. 1982, 17, 3611-3616.
- [31] Nakano K., Komiya A., Sasaki K., Saka H., Microstructure of carbon fiber reinforced silicon carbide and silicon nitride composites, Proc. HT-CMC-1, eds. R. Naslain et al., Woodhead Publ., Abington/Cambridge 1993, 413-420.
- [32] Nakano K., Sasaki K., Saka H., Fujikura M., Ichikawa H., SiC- and Si3N4-matrix composites according to the hotpressing route, Ceram. Trans. 1995, 58, 215-229.
- [33] Katoh Y., Dong S-M., Kohyama A., A novel processing technique of silicon carbide-based ceramic composites for high temperature applications, Ceram. Trans. 2002, 144, 77-86.
- [34] Katoh Y., Kohyama A., Dong S-M., Hinoki T., Kai J-J., Microstructure and properties of liquid phase sintered SiC/SiC composites, Ceram. Trans. 2002, 144, 363-370.
- [35] Nakano K., Suzuki K., Drissi-Habti M., Kanno Y., Processing and characterization of 3D carbon fiber reinforced silicon carbide and silicon nitride matrix composites, Ceram. Trans. 1998, 99, 157-165.
- [36] Tu W-C., Lange F.F., Evans A.G., Concept for a damagetolerant ceramic composite with „strong” interfaces, J. Amer. Ceram. Soc. 1996, 79, 2, 417-424.
- [37] Lange F.F., Levi C.G., Zok F.W., Processing fiber reinforced ceramics with porous matrices, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.14, Elsevier, Amsterdam 2000, 427-447.
- [38] Hasegawa Y., Iimura M., Yajima S., Synthesis of continuous silicon carbide fibre, Part 2 Conversion of polycarbosilane fibre into silicon carbide fibres, J. Mater. Sci. 1980, 15, 720-728.
- [39] Ichikawa H., Okamura K., Seguchi T., Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing, Ceram. Trans. 1995, 58, 65-74.
- [40] Ishikawa T., Sato M., Kajii S., Tanaka Y., Suzuki M., A thermally conductive SiC-polycrystalline fiber and its fiber-bonded ceramic, Ceram. Eng. Sci. Proc. 2001, 22, 3, 471-480.
- [41] Lipowitz J., Rabe J.A., Zangvil A., Xu Y., Structure and properties of Sylramic silicon carbide fiber: a polycrystalline, stoichiometric β-SiC composition, Ceram. Eng. Sci. Proc. 1997, 18, 3, 147-157.
- [42] Naslain R., Ceramic oxide fibers from sol-gels and slurries, (in:) Advanced Inorganic fibers: Processes, Structures, Properties, Applications, ed. F.T. Wallenberger, Chap. 8, Kluwer Acad. Publ., Boston 2000, 206-232.
- [43] Berger M.H., Bunsell A.R., Oxide fibers, (in:) Comprehensive Composite Materials, Vol. 1, ed. T.W. Chou, Chap. 1.05, Elsevier, Amsterdam 2000, 147-173.
- [44] Wilson D.M., New high temperature oxide fibers, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 3-12.
- [45] Crivelli-Visconti I., Cooper G.A., Mechanical properties of a new carbon fiber material, Nature 1969, 221, 754-755.
- [46] Sambell R.A., Bowen D., Phillips D.C., Carbon fiber composites with ceramic and glass matrices, Part 1 and 2, J. Mater. Sci. 1972, 7, 663-681.
- [47] He M.Y., Hutchinson J.W., Crack deflection at an interface between dissimilar materials, Int. J. Solids Struct. 1989, 25, 1053-1067.
- [48] Evans A.G., Zok F.W., Davis J.B., The role of interfaces in fiber-reinforced brittle matrix composites, Composites Sci. Technol. 1991, 42, 3-24.
- [49] Cao H.C., Bischoff E., Sbaizero O., Rühle M., Evans A.G., Marshall D.B., Brennan J.J., Effect of interfaces on the properties of fiber-reinforced ceramics, J. Amer. Ceram. Soc. 1991, 73, 1691-1699.
- [50] Davis J.B., Löfvander J.P.A., Evans A.G., Bischoff E., Emiliani M.L., Fiber coating concepts for brittle-matrix composites, J. Amer. Ceram. Soc. 1993, 76, 5, 1249-1257.
- [51] Lewis M.H., Interphase formation, microstructure and performance, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 136-148.
- [52] Brennan J.J., Interfacial characterization of glass and glassceramic matrix/Nicalon SiC fiber composites, Mater. Sci. Res., Vol. 20, eds. R.E. Tressler et al., Plenum Press, New York 1986, 549-560.
- [53] Brennan J., Interfacial studies of fiber reinforced glassceramic matrix composites, (in:) High Temperature Ceramic Matrix Composites, eds. R. Naslain et al., Woodhead Publ. Ltd., Abington/Cambridge (UK) 1993, 269-283.
- [54] Fareed A.S., Schiroky G.H., Kennedy C.R., Development of BN/SiC duplex fiber coatings for fiber-reinforced alumina matrix composites fabricated by directed metal oxydation, Ceram. Eng. Sci. Proc. 1993, 14, 9-10, 794-801.
- [55] Sun E.Y., Nutt S.R., Brennan J.J., Interfacial microstructure and chemistry of SiC/BN dual-coated Nicalon-fiber-reinforced glass-ceramic matrix composites, J. Amer. Ceram. Soc. 1994, 77, 5, 1329-1339.
- [56] Droillard C., Lamon J., Bourrat X., Strong interface in CMCs: a condition for efficient multilayered interphases, Mat. Res. Soc. Symp. Proc. 1995, 365, 371-376.
- [57] Kim Y-W., Lee J-G., Kim M-S., Park J-H., Effect of multilayer coating on mechanical properties of Nicalonfibre-reinforced silicon carbide composites, J. Mater. Sci. 1996, 31, 335-338.
- [58] Bertrand S., Boisron O., Pailler R., Lamon J., Naslain R., (PyC-SiC)n and (BN-SiC)n nanoscale-multilayered interphases by pressure-pulsed-CVI, Key Engineering Mater. 1999, 164-165, 357-360.
- [59] Hinoki T., Snead L.L., Taguchi T., Igawa N., Yang W., Nozawa T., Katoh Y., Kohyama A., Optimization and characterization of chemical vapor infiltrated SiC/SiC composites, Ceram. Trans. 2002, 144, 55-67.
- [60] Curtin W.A., Stress-strain behavior of brittle matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.03, Elsevier, Amsterdam 2000, 47-76.
- [61] Lamon J., Rebillat F., Evans A.G., Assessment of a microcomposite test procedure for evaluating constituent properties of ceramic matrix composites, J. Amer. Ceram. Soc. 1995, 78, 2, 401-405.
- [62] Heathcote J.A., Gong X-Y., Yang CJ-Y., Ramamurty U., Zok F.W., In-plane mechanical properties of an all-oxide ceramic composite, J. Amer. Ceram. Soc. 1999, 82, 10, 2721-2730.
- [63] Brennan J.J., Nutt S.R., Sun E.Y., Interfacial microstructure and stability of BN coated Nicalon fiber/Glass-ceramic composites, Ceram. Trans. 1995, 58, 53-64.
- [64] Göring J., Flucht F., Schneider H., Mechanical behavior of WHIPOX ceramic matrix composites, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 675-680.
- [65] Ramamurty U., McNulty J.C. and Steen M., Fatigue in ceramic matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.07, Elsevier, Amsterdam 2000, 163-219.
- [66] Reynaud P., Rouby D., Fantozzi G., Abbé F., Peres P., Cyclic-fatigue at high temperatures of ceramic-matrix composites, Ceram. Trans. 1995, 57, 85-94.
- [67] Fantozzi G., Chevalier J., Olagnon C., Chermant J.L., Creep of ceramic matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Elsevier, Amsterdam 2000, 115-162.
- [68] Casas L., Elizalde M.R., Martinez-Esnaola J.M., MartinMeizoso A., Gill Sevillano J., Claxton E., Doleman P., Behavior of 2.5D woven composite material SiC/SiC, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 486-491.
- [69] Chermant J.L., Holmes J., Elevated temperature creep and cyclic creep behavior of fiber-reinforced ceramics, Ceram. Trans. 1995, 57, 95-106.
- [70] Boitier G., Chermant J.L., Cubero H., Darzens S., Farizy G., Vicens J., Sangleboeuf J.C., CMC creep mechanism under argon, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 492-497.
- [71] Withers P.J., Elastic and thermoelastic properties of brittle matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.02, Elsevier, Amsterdam 2000, 25-45.
- [72] Taylor R., Measurement and interpretation of thermal transport in directionally reinforced ceramic matrix composites, Ceram. Trans. 1995, 57, 171-180.
- [73] Taylor R., Carbon matrix composites, (in:) Comprehensive Composite Materials, Vol. 4, ed. R. Warren, Chap. 4.13, Elsevier, Amsterdam 2000, 387-426.
- [74] Yamada R., Igawa N., Taguchi T., A finite element analysis of the thermal diffusivity/conductivity of SiC/SiC composites, Ceram. Trans. 2002, 144, 289-299.
- [75] Yoshida K., Imai M., Yano T., Mechanical and thermal properties of hot-pressed SiC/SiC composite using SiC matrix containing, coarse SiC grains, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 388-393.
- [76] Schneider B., Guette A., Naslain R., Cataldi M., Costecalde A., A theoretical and experimental approach to the active-to-passive transition in the oxidation of silicon carbide, J. Mater. Sci. 1998, 33, 535-547.
- [77] Filipuzzi L., Naslain R., Oxidation mechanisms and kinetics of 1D-SiC/C/SiC composite materials - 2 - Modelling, J. Amer. Ceram. Soc. 1994, 77, 8, 467-480.
- [78] Opila E.J., Oxidation and volatilization of silica formers in water vapor, J. Amer. Ceram. Soc. 2003, 86, 8, 1238-1248.
- [79] Tortorelli P.F., More K.L., Effects of high water-vapor pressure on oxidation of silicon carbide at 1200°C, J. Amer. Ceram. Soc. 2003, 86, 8, 1249-1255.
- [80] More K.L., Tortorelli P.F., Walker L.R., Miriyala N., Price J.R., van Roode M., High-temperature stability of SiCbased composites in high-water-vapor-pressure environments, J. Amer. Ceram. Soc. 2003, 86, 8, 1272-1281.
- [81] Goujard S., Vandenbulcke L., Deposition of Si-B-C materials from the vapor phase for applications in ceramic matrix composites, Ceram. Trans. 1994, 46, 925-935.
- [82] Lee K.N., Fox D.S., Eldridge J.I., Zhu D-M., Robinson R.C., Bansal N.P., Miller R.A., Upper temperature limit of environmental barrier coatings based on mullite and BSAS, J. Amer. Ceram. Soc. 2003, 86, 8, 1299-1306.
- [83] Pierce J.L., Zawada L.P., Srinivasan R., Tensile properties of Nicalon fiber-reinforced carbon following aerospace turbine engine testing, J. Mater. Eng. Performan. 2003, 12, 3, 354-362.
- [84] Lamouroux F., Bertrand S., Pailler R., Naslain R., Cataldi M., Oxidation resistant carbon-fiber-reinforced ceramic-matrix composites, Composites Sci. Technol. 1999, 59, 1073-1085.
- [85] Bouillon E., Abbe F., Goujard S., Pestourie E., Habarou G., Dambrine B., Mechnical and thermal properties of a selfsealing matrix composite and determination of the lifetime duration, Ceram. Eng. Sci. Proc. 2000, 21, 3, 459-467.
- [86] Lamouroux F., Bouillon E., Cavalier J.C., Spriet P., Habarou G., An improved long life duration CMC for jet aircraft engine applications, (in:) High Temperature Ceramic Matrix Composites, ed. W. Krenkel et al., WileyVCH, Weinheim 2001, 783-788.
- [87] Yen B.K., Ishihara T., An investigation of friction and wear mechanisms of carbon-carbon composites in nitrogen and air at elevated temperatures, Carbon 1996, 34, 4, 489-498.
- [88] Krenkel W., Heidenreich B., Renz R., C/C-SiC composites for advanced friction systems, Adv. Eng. Mater. 2002, 4, 7, 427-436.
- [89] Krenkel W., Henke T., Design of high performance CMC brake discs, Key Eng. Mater. 1999, 164-165, 421.
- [90] Vaidyaraman S., Purdy M., Walker T., Horst S., C/SiC material evaluation for aircraft brake applications, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 802-808.
- [91] Jones R.H., Henager Jr. C.H., Hollenberg G.W., Composite materials for fusion applications, J. Nuclear Mater. 1992, 191-194, 75-83.
- [92] Snead L.L., Jones R.H., Kohyama A., Fenici P., Status of silicon carbide composites for fusion, J. Nuclear Mater. 1996, 233-237, 26-36.
- [93] Jones R.H., Steiner D., Heinisch H.L., Newsome G.A., Keroh H.M., Radiation resistant ceramic matrix composites, J. Nuclear Mater. 1997, 245, 87-107.
- [94] Snead L.L., Osborne M.C., Lowden R.A., Strizak J., Shinavski R.J., More K.L., Eatherly W.S., Bailey J., Williams A.M., Low dose irradiation performance of SiC interphase SiC/SiC composites, J. Nuclear Mater. 1998, 253, 20-30.
- [95] Jones R.H., Giancarli L., Hasegawa A., Katoh Y., Kohyama A., Riccardi B., Snead L.L., Weber M.J., Promise and challenges of SiCf/SiC composites for fusion energy applications, J. Nuclear Mater. 2002, 307-311, 1057-1072.
- [96] Kishimoto H., Katoh Y., Kohyama A., Microstructural stability of SiC and SiC/SiC composites under high temperature irradiation environment, J. Nuclear Mater. 2002, 307- -311, 1130-1134
- [97] Hino T., Jinushi T., Hirohata Y., Hashiba M., Yamauchi Y., Katoh Y., Kohyama A., Helium gas permeability of SiC/SiC composite developed for blanket component, Fusion Sci. Technol. 2003, 43, 184-190.
- [98] Bokros J.C., Carbon biomedical devices, Carbon 1977, 15, 353-371.
- [99] Broquere B., Buttazzoni B. and Choury J.J., Carbon-carbon composites and their industrial applications, (in French), (in:) Introduction aux Matériaux Composites, Vol. 2, ed. R. Naslain, Chap. 17, Coedition CNRS/IMC, Bordeaux 1985, 405-438.
- [100] Lamicq P.J., Jamet J.F., Thermostructural CMCs: an overview of the French experience, Ceram. Trans. 1995, 57, 1- 11.
- [101] Christin F., Design, fabrication and applications of thermostructural composites (TSC) like C/C, C/SiC and SiC/SiC composites, Adv. Engineering Mater. 2002, 4, 12, 903-912.
- [102] Krenkel W., Applications of fibre-reinforced C/C-SiC ceramics, DKG 2003, 80, 8, E31-E38.
- [103] Nishi K., Gotoh J., Aratama S., Development of 3D- -SiC/SiC component model for Hope-X (H2 orbiting plane experimental), (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 754-759.
- [104] Christin F., Design, fabrication and application of C/C, C/SiC and SiC/SiC composites, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 731-743.
- [105] Spriet P., Habarou G., Applications of CMCs to turbojet engines: overview of the SEP experience, Key Eng. Mater. 1997, 127-131, 1267-1276.
- 106] Staehler J.M., Zawada L.P., Performance of four ceramicmatrix composite divergent flap inserts following ground testing on an F110 turbofan engine, J. Amer. Ceram. Soc. 2000, 83, 7, 1727-1738.
- [107] Ohnabe H., Masaki S., Onozuka M., Miyahara K., Sasa T., Potential application of ceramic matrix composites to aero-engine components, Composites, Part. A 1999, 30, 489-496.
- [108] Suzuki Y., Satoh T., Kawano M., Akikawa N., Matsuda Y., Combustion test results of an uncooled combustor with ceramic matrix composite liner, Trans. ASME 2003, 125, 28-33.
- [109] Araki T., Yunoki N., Nishide S., Sintered SiC fiber reinforced SiC-matrix composites for turbine rotor application, Ceram. Eng., Sci. Proc. 2000, 21, 3, 377-384.
- [110] Brentnall W.D., van Roode M., Norton P.F., Gates S., Rice J.R., Jimenez O., Miriyala N., Ceramic gas turbine development at Solar Turbines Incorporated, (in:) Ceramic Gas Turbine Design and Test Experience, Vol. 1, eds. M. van Roode et al., Chap. 7, ASME Press, New York 2002, 155-192.
- [111] Luthra K.L., Corman G.S., Melt infiltrated (MI) SiC/SiC composites for gas turbine applications, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 744-753.
- [112] Corman G.S., Dean A.J., Brabelz S., Brun M.K., Luthra K.L., Tognarelli L., Pecchioli M., Rig and engine testing of melt infiltrated ceramic composites for combustor and shroud applications, Trans. ASME, J. Engineering for Gas Turbines and Power 2002, 124, 459-464.
- [113] Nishio K., Igashira K.I., Take K., Suemitsu T., Development of a combustor liner composed of ceramic matrix composite (CMC) Trans. ASME, J. Engineering for Gas Turbines and Power 1999, 121, 12-17.
- [114] Igashira K., Matsuda Y., Matsubara G., Imamura A., Development of the advanced combustor liner composed of CMC/GMC hybrid composite material, (in:) High Temperature Ceramic Matrix Composites, eds. W. Krenkel et al., Wiley-VCH, Weinheim 2001, 789-796.
- [115] Tressler R.E., Recent developments in fibers and interphases for high temperature ceramic matrix composites, Composites Part A 1999, 30, 429-437.
- [116] Droillard C., Preparation and characterization of SiC- -matrix composites with multilayered C/SiC interphases, PhD Thesis, Univ. Bordeaux 1, June 19, 1993. [117] Filipuzzi L., Camus G., Naslain R., Thebault J., Oxidation mechanisms and kinetics of 1D-SiC/C/SiC composite materials, 1- an experimental approach, J. Amer. Ceram. Soc. 1994, 77, 2, 459-466.
- [117] Filipuzzi L., Camus G., Naslain R., Thebault J., Oxidation mechanisms and kinetics of 1D-iC/C/SiC composite materials, 1- an experimental approach, J. Amer. Ceram. Soc. 1994, 77, 2, 459-466.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0011-0059