Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | nr 187 | 1-153
Tytuł artykułu

Granica diageneza/anchimetamorfizm w skałach najwyższego proterozoiku i kambru ze wschodniej części bloku małopolskiego wyznaczona na podstawie badań minerałów ilastych

Autorzy
Warianty tytułu
EN
Boundary between diagenesis/anchimetamorphism in the Upper Proterozoic and Cambrian rocks from the eastern part of the Małopolska massif established on the basis of examination of clay minerals
Języki publikacji
PL
Abstrakty
PL
Przez wiele lat wysoki stopień przeobrażeń termicznych skał proterozoicznych i kambryjskich bloku małopolskiego, występujących w jego wschodniej części, był korelowany ze zróżnicowaniem ich wieku [168, 150, 219]. Skały wykazujące oznaki metamorfizmu bardzo niskiego stopnia (przede wszystkim silne zaangażowanie tektoniczne, skliważowanie) określano mianem łupków sfyllityzowanych i uważano za ediakarskie. Przeprowadzone badania materiału ilastego pozwoliły wykazać, że zmiana przeobrażeń od późnej diagenezy (od ponad 20% S w I/S) do anchimetamorfizmu (do < 10% S w I/S i KI < 0,30 Delta stopni 20) w obrębie kompleksu ediakarsko-kambryjskiego następuje stopniowo. Zakresy maksymalnych paleotemperatur jakim podlegały te skały zawierają się w szerokim przedziale, odpowiednio, od 150 stopni Celsjusza do niemal 300 stopni Celsjusza. Maksimum anchimetamorfizmu zlokalizowano w południowo-wschodniej części antyklinorium dolnego Sanu. Przeprowadzone badania materiału illitowego pozwoliły wyznaczyć przebieg strefy granicznej późna diageneza/ anchimetamorfizm. Pomimo generalnie ciągłego charakteru zaobserwowanych zmian diagenetycznych i anchimetamorficznych, analiza lateralna powyższych parametrów pozwoliła stwierdzić obecność stref natury tektonicznej, gdzie zmiany te następują skokowo. Wydzielono dwie główne strefy tego typu o znaczeniu regionalnym: strefę uskokową Trzciana-Mielec oraz strefę uskokową zrębu Ryszkowej Woli, która być może stanowi południową część linii TT lub przedłużenie rozłamu świętokrzyskiego. Generalnie najniższy stopień diagenezy stwierdzono w zachodniej części bloku małopolskiego i wielu próbkach z bloku górnośląskiego. Uzyskany dla bloku górnośląskiego duży rozrzut wartości parametrów diagnostycznych: %S w I/S i KI, w pojedynczych otworach, łączyć można z obecnością zjawisk metamorfizmu kontaktowego. Stopień zaawansowania diagenezy i metamorfizmu określano dwiema różnymi metodami rentgenowskimi, czyli w oparciu zawartości pakietów pęczniejących w illicie/smektycie (%S w I/S), wskaźnik krystaliczności illitu (indeks Küblera). Obecność strefy anchimetamorficznej została potwierdzona dodatkowo badaniami uzupełniającymi: analizą politypów illitu, składu chemicznego i politypowego chlorytów, jak również obserwacjami mikroskopowymi.
EN
For many years, the high degree of thermal transformations of Proterozoic and Cambrian rocks occurring in the eastern part of the Małopolska massif was correlated with differences in their age [168, 150, 219]. The rocks demonstrating signs of the very low-grade metamorphism (most of all traces of strong tectonic activity, cleavage) were described as phyllitised shales and considered to be of the Ediacaran origin. Examination of the clay material proved that the changes from late diagenesis (from over 20% S in I/S) to anchimetamorphism (to < 10% S in I/S and KI < 0,30 Delta degree 20) within the Ediacaran-Cambrian complex proceeded gradually. That rocks was affected by the maximum paleotemperatures from the range of 150 degrees of Celsius to nearly 300 degrees of Celsius, respectively. The maximum anchimetamorphism was discovered in the south-eastern part of the lower San anticline. Examination of the illitic material allowed to determine the boundary between late diagenesis and anchimetamorphism. Despite generally continuous character of observed diagenetic and anchimetamorphic changes, the lateral analysis of described parameters allowed to discover areas of tectonic nature where these changes occurred abruptly. Two main such a places of the regional importance were assigned: the Trzciana-Mielec fault zone and the Ryszkowa Wola Horst, which might be the southern part of the TT line or extension of the Holy Cross Mountains dislocation. Generally, the lowest degree of diagenesis was found in the western part of the Małopolska massif and several samples from the Upper Silesian massif. Significant distribution of values of diagnostic parameters: % S in I/S and KI, obtained for the Upper Silesian massif in single boreholes can be associated with the presence of phenomena of contact metamorphism. The advance of diagenesis and metamorphism was determined using two different X-ray methods, i.e. on the basis of the content of swelling layers in illite-smectite (% S in I/S) and the illite crystallinity index (the Kübler index). The presence of the anchimetamorphic zone was additionally confirmed by complementary tests: analysis of illite polytypes, chemical composition and polytypes of chlorites, as well as microscopic observations.
Wydawca

Rocznik
Tom
Strony
1-153
Opis fizyczny
Bibliogr. 229 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Nafty i Gazu, Kraków
Bibliografia
  • 1. AAGAARD P., JAHREN J.S., 1992. Diagenetic illite-chlorite assemblages in arenites: II. Their thermodynamic relations. Clays Clay Minerals 40: 547-554.
  • 2. AHN J.H., BUSECK P.R., 1990. Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging. Am. Miner. 75:267-275.
  • 3. AHN H.J., PEACOR D.R., 1986. Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays Clay Miner. 34: 165-179.
  • 4. ALDEGA L., BOTTI F., CORRADO S., 2007. Clay mineral assembages and vitrinite reflekstance in the Laga Basin (central Apennines, Italy): what do they record? Clays Clay Miner. 55: 504-518.
  • 5. ALTANER S.P., WEISS C.A. JR., KIRKPATRIK R.J., 1988. Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals. Nature 331: 699-702.
  • 6. ALTANER S.P., YLAGAN R.F., 1997. Comparison of structural models of mixed-layer illite/smectite and reaction mechanism of smectite illitization. Clays Clay Miner. 45: 517-533.
  • 7. ARKAI P., 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology 9: 723-734.
  • 8. ARKAI, P., MERRIMAN, R.J., ROBERTS, B., PEACOR, D.R., TOTH, M., 1996. Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. European Journal of Mineralogy 8, 1119-1137.
  • 9. ARKAI P., SASSI F.P., DESMONS J., 2007. A systematic nomenclature for metamorphic rocks: 2. Very low- to low-grade metamorphic rocks. Recomendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. SCMR website (www.bgs.ac.uk/SCMR).
  • 10. AUSTIN G.S., GLASS H.D., HUGHES R.E., 1989. Resolution of the polytype structure of some illitic clay minerals that appear to be 1M d. Clays Clay Miner 37: 128-134.
  • 11. BACZYŃSKI A., KOWALSKA S. I INNI, 1999. Wykorzystanie wyników badań petrofizycznych, mineralogiczno-petrograficznych i danych geofizyki wiertniczej do identyfikacji utworów podłoża miocenu autochtonicznego w części wschodniej zapadliska przedkarpackiego. Archiwum IGNiG - Kraków.
  • 12. BAILEY S.W., 1980. Structures of layer silicates. In Brindley G.W. and Brown G. ed. Crystal Structures of Clay Minerals and Their X-Ray Identification. Monograph 5, Mineralogical Society, London: pp. 1-123.
  • 13. BAILEY S.W., 1988. Chlorites; structures and crystal chemistry. In: Hydrous Phyllosilicates (Exclusive of Micas). S.W. Bailey ed. Reviews in Mineralogy 19: 347-403
  • 14. BAILEY S.W, BROWN B. E., 1962. Chlorite polytypism: I Regular and semirandom one-layer structures. Amer. Mineral. 47: 819-850.
  • 15. BAILEY S. W., FRANK-KAMENETSKII V. A., GOLDSZTAUB S., KATO A., PABST A., SCHULZ H., TAYLOR H. F. W, FLEISCHER M., WILSON A. J. C., 1977. Report of the International Mineralogical Association (IMA)-International Union of Crystallography (IUCr) Joint Committee on Nomenclature. Acta Crystallogr. A33, 681-684.
  • 16. BATTAGLIA S., 1999. Applying x-ray geothermometer diffraction to a chlorite. Clays Clay Minerals 47: 54-63.
  • 17. BELKA Z., VALVERDE-VAQUERO P., DORR W., ARENDT H., WEMMER K., FRANKE W., SCHAFER J., 2002. Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester J.A., Pharaoh T.C. and Verniers J. (eds), Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications, 201: 19-36.
  • 18. BERTHELSEN A., 1993. Where different geological philosophies meet: the TransEuropean suture zone. Publ. Inst. Geophys., Pol. Acad. Sci., A 20: 19- 31.
  • 19. BJORLYKE K., 1985. Formation of secondary porosity: How important is it? W: Clastic Diagenesis. D.A. Mcdonald and R.C. Surdam (eds.). AAPG Memoir 37, 277-286.
  • 20. BRIME C., EBERL D.D., 2002. Growth mechanisms of low-grade illites based on the shapes of crystal thickness distributions. Schweizerische Mineralogische und Petrogrphische Mitteilungen 82, 203-209.
  • 21. BRINDLEY G.W., 1961. Chlorite Minerals. Pp. 242-296 in: The X-ray Identification and Crystal Structures of Clay Minerals (G. Brown, editor). Mineralogical Society, London.
  • 22. BROWN B. E., BAILEY S. W., 1963. Chlorite polytypism: II. Crystal structure of a one-layer Cr-chlorite. Amer. Minera148: 42-61.
  • 23. BROWN G., BRINDLEY G.W., 1980. X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G, editors. Crystal structures of clay minerals and their X-ray identification. Monograph No. 5. London: Mineralogical Society. P 305-359.
  • 24. BROCHWICZ-LEWIŃSKI W., POŻARYSKI WŁ., TOMCZYK H., 1981. Wielkoskalowe ruchy przesuwcze wzdłuż SW brzegu platformy wschodnioeuropejskiej we wczesnym paleozoiku. Prz. Geol. 29: 385-397.
  • 25. BUŁA Z., 2000. Dolny paleozoik Górnego Śląska i Zachodniej Małopolski. Pr. Państw. Inst. Geol. 171: 1-63.
  • 26. BUŁA Z., ŻABA J., 2005. Pozycja tektoniczna Górnośląskiego Zagłębia Węglowego na tle prekambryjskiego i dolnopaleozoicznego podłoża. 76 Zjazd Polskiego Towarzystwa Geologicznego, Rudy k/Rybnika: 14-42.
  • 27. BUŁA Z. I ZESPÓŁ, 2007. Opracowanie map geologiczno-strukturalnych podłoża paleozoicznego Karpat i zapadliska przedkarpackiego i określenie na ich tle prawidłowości rozprzestrzenienia złóż węglowodorów. Archiwum PIG - Sosnowiec, 1-88.
  • 28. BURCHART J., 1971. Wiek bezwzględny skał polskich (katalog oznaczeń geochronologicznych). Rocz. PTG 41: 241-252.
  • 29. BURST J.F., 1959. Postdiagenetic clay mineral environmental relationships in the Gulf Coast Eocene. Clays Clay Miner. 6: 327-341.
  • 30. CATHELINEAU M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23: 471-485.
  • 31. CATHELINEAU M., NIEVA D., 1985. A chlorite solid solution geothermometer. Contrib. Min. Pet. 91: 235-244.
  • 32. CHAMLEY H., 1989. Clay Sedimentology. Springer-Verlang, Berlin, Heidelberg: 623 p.
  • 33. CLAUER N., ŚRODOŃ J., FRANCU J., ŚUCHA V., 1997. K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Miner. 32: 181-196.
  • 34. COCKS L.R.M., 2002. Key Lower Palaeozoic faunas from near the Trans-European Suture Zone. In: Winchester J.A., Pharaoh T.C. and Verniers J. (eds), Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications, 201: 37-46.
  • 35. COCKS L.R.M., TORSVIK T.H., 2005. Baltica from the late Precambrian to mid- Palaeozoic times: the gain and loss of terrane's identity. Earth-Science Reviews 72: 39-66.
  • 36. COMPSTON W., SAMBRIDGE M.S., REINFRANK R.F., MOCZYDLOWSKA M., VIDAL G., CLAESSON S., 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. J. Geol. Soci. London 152: 599-611.
  • 37. DADLEZ R., GRAD M., GUTERCH A., 2005. Crustal structure below the Polish Basin: is it composed of proximal terranes derived from Baltica? Tectonophysics 411: 111-128.
  • 38. DALLA TORRE M., STERN W.B., FREY M., 1994. Determination of white K-mica polytype ratio-comparison of different XRD methods. Clay Minerals 29, 717-726.
  • 39. DANIELS E.J., ALTANER S.P., 1990. Clay mineral authigenesis in coal and shale from Anthracite region, Pennsylvania. Am. Miner. 75: 825-839.
  • 40. DE CARITAT P., HUTCHEON I., WALSHE J. L., 1993. Chlorite geothermometry: a review. Clays Clay Miner. 41: 219-239.
  • 41. DONG H., PEACOR D.R., 1996. TEM observations of coherent stacking relations in smectite, I/S and illite of shales: evidence for MacEwan crystallites and dominance of 2M, polytypism. Clays Clay Miner. 44: 257-275.
  • 42. DRITS V.A., PLANCON B.A., SAKHAROV B.A., BESSON G., TSIPURSKY S.I., TCHOUBAR C., 1984. Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects. Clay Miner. 19: 541-561.
  • 43. DRITS V., LINDGREEN H., SALYN A.L., 1997a. Determination of the content and distribution of fixed ammonium in illite-smectite by X-ray diffraction; application to North Sea illite-smectite. Am. Miner. 82: 79-87.
  • 44. DRITS V., SAKHAROV B., LINDGREEN A.H., SALYN A., 1997b. Sequential structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from the North Sea and Denmark. Clay Minerals 32: 351-371.
  • 45. DRITS V., ŚRODOŃ J., EBERL D.D., 1997c. XRD measurement of mean crystal thickness of illite and illite/smectite: reappraisal of the Kubler index and the Scherrer equation. Clays Clay Miner. 45: 461-475.
  • 46. DRITS V., EBERL D.D., ŚRODOŃ J., 1998. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique. Clays Clay Miner. 46: 38-50.
  • 47. DUDEK T., 2001. Diagenetic evolution of illite/smectite in the Miocene shales from the Przemyśl area (Carpathian Foredeep). Ph.D. thesis. Instytut Nauk Geologicznych PAN, 155 pp.
  • 48. DUDEK T., ŚRODOŃ J., 1996. Identification of illite/smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness. Geol. Carpathica-Clays 5: 21-32.
  • 49. DUDEK T., ŚRODOŃ J., EBERL D.D., ELSASS F., UHLIK P., 2002. Thickness distribution of illite crystals in shales. I: X-ray difraction vs. High-resolution trans- mission electron microscopy measurements. Clays Clay Miner. 50: 562-577.
  • 50. DUNOYER DE SEGONZAC G., 1970. The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology 15: 281-346.
  • 51. DUROVIC S., DORNBERGER-SCHIFF K., WEISS Z., 1983. Chlorite polytypism. I. OD interpretation and polytype symbolism of chlorite structures. Acta Cryst. B39: 547-552.
  • 52. DZIADZIO P., JACHOWICZ M., 1996: Budowa podłoża utworów mioceńskich na SW od wyniesienia Lubaczowa. Prz. Geol. 44: 1124-1130.
  • 53. DZIADZIO P., MASŁOWSKI E. i PROBULSKI J., 1996: Charakterystyka geologiczna utworów kambru w obszarze Nowa Sarzyna - Księżpol- Lubaczów - Załazie (NE część zapadliska przedkarpackiego). Arch. BG Geonafta, Gorlice.
  • 54. EBERL D.D., 1984. Clay mineral formation and transformation in rocks and soils: Philosophical Transactions of The Royal Society of London A, v. 311, p. 241-257.
  • 55. EBERL D.D., 2003. User's Guide to Rockjock-Aprogram for determining quantitative mineralogy from powder X-ray diffraction data. U.S. Geological Survey Open- File Report 03-78, 1-46.
  • 56. EBERL D.D., HOWER J., 1976. Kinetics of illite formation. Geol. Soc. Am. Bull. 87: 1326-1330.
  • 57. EBERL D.D., NUESCH R., SUCHA V., TSIPURSKY S., 1998. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation. Clays Clay Miner. 46: 89-97.
  • 58. EHRENBERG S.N., 1993. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf. AAPG Bull. 77: 1260-1286.
  • 59. EGGLETON R. A., BAILEY S. W., 1967. Structural aspects of dioctahedral chlorite. Amer. Mineral. 52: 673-689.
  • 60. ELLIOT W.C., ARONSON J.J., 1987. Alleghenian episode of K-bentonite illitization in the southern Appalachian Basin. Geology 15: 735 - 739.
  • 61. ELLIOT W.C., MATISOFF G., 1996. Evaluation of kinetic models for the smectite to illite transformation. Clays Clay Miner. 44: 77-87.
  • 62. ESSENE E.J., PEACOR D.R., 1995. Clay mineral thermometry: a critical perspective. Clays Clay Miner. 43: 540-553.
  • 63. FOSCOLOS A.E., KODAMA H., 1974. Diagenesis of clay minerals from Lower Cretaceous shales of north eastern British Columbia. Clays Clay Miner. 22: 319-335.
  • 64. FREY M., 1969. A mixed-layer paragonit/phengite of low-grade metamorphic origin. Contributions to Mineralogy and Petrology 14: 63-65.
  • 65. FREY M., 1987. Low Temperature Metamorphism. Blackie&Son Ltd., New York: 350 p.
  • 66. FREY M., ROBINSON D., 1999. Low-Grade Metamorphism. Blackwell Science, Cambridge: 313 p.
  • 67. GAWLICK H.J., KRYSTYN L., LEIN R., 1994. Conodont colour alteration indices: Palaeotemperatures and metamorphism in the Northern Calcareous Alps - a general view. Geol. Rundsch. 83: 660-664.
  • 68. GLASMANN J.R., LARTER S., BRIEDIS N.A., LUNDEGARD P.D., 1989. Shale diagenesis in the Bergen High area, North Sea. Clays Clay Miner. 3: 97-112.
  • 69. GŁOWACKI E., KARNKOWSKI P., ŻAK C., 1963. Prekambr i kambr w podłożu przedgórza Karpat środkowych i w górach Świętokrzyskich. Rocz. PTG 33 (3): 320-335.
  • 70. GŁUSZEK A., 1994. Skamieniałości śladowe z otworu Wola Zaleska-1. Arch. BG Geonafta-Gorlice.
  • 71. GRAD M., GUTERCH A., KELLER G. R., JANIK T., HEGEDUS E., VOZAR J., ŚLĄCZKA A., TIIRA T., YLINIEMI J., 2006. Lithospheric structure beneath trans- Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CELOS. J. Geophys. Res., 111.
  • 72. GRATHOFF G.H., MOORE D.M., 1996. Illite polytype quantification using WILD- FIRE calculated X-ray diffraction patterns. Clays Clay Miner. 44: 835-842.
  • 73. GRATHOFF G.H., MOORE D.M., 2002. Characterization of the Waukesha Illite: A mixed-polytype illite in the Clay Mineral Society repository. Am. Miner. 87: 1557 - 1563.
  • 74. GUTERCH A., GRAD M., KELLER G.R., POSGAY K., VOZAR J., SPICAK A., BRUCKL E., HAJNAL Z., THYBO H., SELVI O., 2003. CELEBRATION 2000 seismic experiment. Stud. Geophys. Geod. 47: 659-670.
  • 75. GUTERCH A., GRAD M., 2006. Lithospheric structure of the TESZ in Poland based on modern seismic experiments. Geol. Quart. 50: 23-32.
  • 76. GUINIER A., BOKIJ G.B., BOLL-DORNBERGER K., COWLEY J.M., DUROVIC S., JAGODZINSKI H., KRISHNA P., DE WOLFF P.M., ZVYAGIN B.B., COX D.E., GOODMAN P., HAHN T., KUCHITSU K., ABRAHAMS S.C., 1984. Nomenclature of polytype structures. Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Crystallogr. A40, 399-404.
  • 77. GUVEN N., 1991. On a definition of illite/smectite mixed-layer. Clays Clay Miner. 39: 661-662.
  • 78. HAKENBEG M., 1997. Stosunek dyslokacji świętokrzyskiej do głębokości występowania powierzni Moho. Prz. Geol. 45: 95-96.
  • 79. HALL P.L., 1994. Physical and chemical aspects of the development of overpressuring in sedimentary environments. Clay Miner. 29: 425-438.
  • 80. HAYES J.B., 1970. Polytypism of chlorite in sedimentary rocks. Clays Clay Miner. 18: 285-306.
  • 81. HILLIER S., VELDE B., 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner. 26: 149-168
  • 82. HOWER J., ESLINGER E.V., HOWER M.E., PERRY E.A., 1976. Mechanism of burial metamorphism of argillaceous sediment: L Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87: 725-737.
  • 83. HUANG W-L., LONGO J.M., PEVEAR D.R., 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometr. Clays Clay Miner. 41: 149-162.
  • 84. HUNZINKER J.C., FREY M., CLAUER N., FRIEDRICHSEN H., FLEHMIG W., HOCHSTRASSER K., ROGGWILER P., SCHWANDER H., 1986. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib. Mineral. Petrol. 92: 157-180.
  • 85. INOUE A., KOHYAMA N., KITAGAWA R., WATANABE T., 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner. 35: 111-120.
  • 86. JACHOWICZ-ZDANOWSKA M., 2011. Organic microfossil assemblages from the late Ediacaran rocks of the Małopolska Block, southeastern Poland. Geological Quarterly, 55 (2): 85-94.
  • 87. JACHOWICZ M., ŻELAŹNIEWICZ A., BUŁA Z., BOBIŃSKI W., HABRYN R., MARKOWIAK M., ŻABA J., 2002. Geneza i pozycja stratygraficzna pod- kambryjskich i podordowickich anchimetamorficznych skał w południowej Polsce - przedpole orogenu neoproterozoicznego? Arch. Państw. Inst. Geol., Sosnowiec.
  • 88. JACKSON M. L., 1969. Soil chemical analysis - Advanced course: 2nd ED. Published by the author. University of Wisconsin, Madison, USA.
  • 89. JAWOR E., 1970. Wgłębna budowa geologiczna obszaru na wschód Krakowa. Acta Geol. Pol. 20: 709-769.
  • 90. JAWOROWSKI K., SIKORSKA M., 2006. Łysogóry Unit (Central Poland) versus East European Craton - application of sedimentological data from Cambrian silici-clastic association. Geol. Quart. 50: 77-88.
  • 91. JEANS C.V., FISHER M.J., MERRIMAN R.J., 2005. Origin of the clay mineral assemblages in the Germanic facies of the English Trias: application of the spore colour index method. Clay Miner. 40: 115-129.
  • 92. JIANG W.T., PEACOR D., 1993. Formation and modification of metastable intermediate sodium potassium mica, paragonit and muscovite in hydrothermally altered metabasites from northern Wales. Am. Mineral. 78: 782-793.
  • 93. JIANG W.T., PEACOR D., BUSECK P.R., 1994. Chlorite geothermometry? - Contamination and apparent octahedral vacancies. Clays Clay Miner. 42: 593-605.
  • 94. JOHNS W.D., MCKALLIP T.E., 1989. Burial diagenesis and specific catalytic activity of illite-smectite clay from Vienna Basin Austria. AAPG Bull. 73: 472-482.
  • 95. KARNKOWSKI P., 1963: Uwagi o budowie geologicznej wschodniej części polskich Karpat fliszowych w świetle głębokich wierceń. Rocz. PTG 33: 457-469.
  • 96. KARNKOWSKI P., 1977. Wgłębne podłoże Karpat. Przeg. Geol. 25: 289-297.
  • 97. KARNKOWSKI P., GŁOWACKI E., 1961. Geological structure of sub-miocene sediments of the middle Carpathian foreland (in Polish with English summary). Kwart. Geol., 5 (2): 372-419.
  • 98. KARPOVA G.V., 1969. Clay mineral post-sedimentary ranks in terrigenous rocks: Sedimentology 13: 5-20.
  • 99. KICUŁA, WISER T., 1970. Osady prekambru i lamprofiry w otworze wiertniczym Opatkowice-1. Rocz. PTG 40: 111-127.
  • 100. KISH H., 1980, Incipient metamorphism of Cambro-Silurian clastic rocks from the Jamtland Supergroup, central Scandinavian Caledonides, western Sweden: illite crystallinity and “vitrinite” reflectance. Journal of the Geological Society, London 137: 271-288.
  • 101. KISH H., 1980. Illite crystalinity and coal rank associated with lowest-grade methamorphism of the Taveyanne greywacke in the Helvetic zone of the Swiss Alps. Eclogae. Geol. Helv. 73: 753-777.
  • 102. KISH H., 1991a. Illite crystallinity. J. Metamorphic Geol. 9: 665-670.
  • 103. KISH H., 1991b. Development of slaty cleavage and degree of very low-grade metamorphism. Journal of Metamorphic Geology 9: 735-750.
  • 104. KOBYŁECKA A., 1994. Diageneza piaskowców fliszowych w wierceniu Kuźmina-1 na tle przeobrażeń skał ilastych. Praca magisterska, UJ.
  • 105. KOTARBA M., ŚRODOŃ J., 2000. Diagenetic evolution of crystallite thick ness distribution of illitic material in Carpathian shales, studied by the Bertaut-Warren-Averbach XRD method (MudMaster computer program). Clay Miner. 35:383-391.
  • 106. KOWALCZEWSKI Z., 1981. Litostratygrafia wendu w Górach Świętokrzyskich i niecce miechowskiej. Przew. 53 Zjazdu Pol. Tow. Geol. w Kielcach: 9-19.
  • 107. KOWALCZEWSKI Z., 1990. Grubookruchowe skały kambru na środkowym południu Polski (litostratygrafia, tektonika, paleogeografia). Pr. Państw. Inst. Geol. 131: 1-82.
  • 108. KOWALSKA S., 2001: The degree of diagenesis of the Cambrian and Vendian? rocks from the Małopolska Block. Polskie Towarzystwo Mineralogiczne - Prace Specjalne. Zeszyt 18.
  • 109. KOWALSKA S., 2009. Granica diageneza/anchimetamorfizm w skałach najwyższego proterozoiku i kambru ze wschodniej części bloku małopolskiego wyznaczona na podstawie badań minerałów ilastych. Praca doktorska. Archiwum ING PAN.
  • 110. KOWALSKA S., KRANC A., MAKSYM A. i ŚMIST P., 2000: Budowa geologiczna podłoża trzeciorzędu w północno-wschodniej części zapadliska przedkarpackiego, w rejonie Lubaczów-Biszcza. Nafta - Gaz 56 (3), 158-173.
  • 111. KOWALSKA S. I INNI, 2000. Analiza stopnia zaawansowani diagenezy w utworach podłoża miocenu na obszarze Pilzno-Sędziszów i ich korelacja z wynikami prac poszukiwawczych. Arch. IGNIG, Kraków.
  • 112. KOZŁOWSKI K., ŁOPOT WŁ., 1989. Petrografia skał osadowych. Skrypt Uniwersytetu Śląskiego nr 440, 307 str.
  • 113. KRÓLIKOWSKI C., 2006. Crustal-scale complexity of the contact zone between the Palaeozoic Platform and the East-European Craton in the NW Poland. Geol. Quart. 50: 33-42.
  • 114. KUBLER B., 1967. La crystallinite de i'illite et les zones tout a fait superieures du metamorphisme. Etages Tectoniques, Colloque de Neuchatel, 1966, Neuchatel, Switzerland.
  • 115. KUBLER B., 1968. Evaluation quantitative du metamorphisme par la crystallinite de i'illite. Bulletin Centre Recherche Pau-SNPA 2.
  • 116. LANSON B., CHAMPION D., 1991. The I/S-to-illite reaction in the late stage diagenesis. Am. J. Sci. 291: 473-506.
  • 117. LEE J.H., AHN J.H., PEACOR D.R., 1985. Textures in layerd silicates: progressive changes through diagenesis and low-temperature metamorphism. Journal of Sedimentary Petrology 55: 532-540.
  • 118. LEVINSON A.A., 1955. Studies in the mica group: polytypism among illites and hydrous micas. Am Minera140: 41-49.
  • 119. LI G., PEACOR D., MERRIMAN R.J., ROBERTS B., 1994. The diagenetic to low grade metamorphic evolution of matrix white micas in the system muscovite-paragonite in a mudrock from Central Wales, U.K. Clays Clay Miner. 42: 369-381.
  • 120. LINDGREEN H., 1994. Ammonium fixation during illite-smectite diagenesis in Upper Jurassic shale, North Sea. Clay Miner. 29: 527-538.
  • 12L LISTER J.S., BAILEY S.W., 1967. Chlorite polytypism: IV. Regular two-layer structures. Amer. Mineral. 52: 1614-1631.
  • 122. LYNCH F. L., MACK L.E., LAND L.S., 1997. Burial diagenesis of illite/smectite in shales and the origins of authigenic quartz and secondary porosity in sandstones. Geochimica Cosmochimica Acta 61: 1995 - 2006.
  • 123. ŁYDKA K., ORŁOWSKI ST., 1978. Sekwencja procesów petrograficznych osadów grupy świętokrzyskiej na tle podziałów lito- i biostratygraficznych. Acta Geol. Pol. 28: 537-546.
  • 124. MAKSYM A, LISZKA B., PIETRUSIAK M., STARYSZAK G., ŚMIST P., 1998. Litostratygrafia i perspektywiczność dewonu w obszarze Bratkowice-Rzeszów. Nafta-Gaz 54: 289-293.
  • 125. MALINOWSKI M., ŻELAŹNIEWICZ A., GRAD M., GUTERCH A., JANIK T., 2005. Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland - CELEBRATION 2000 experiment, profile CEL 02. Tectonophysics 401: 55-77.
  • 126. MARKOWIAK M., 2004. Barwa skał wendyjskich i jej związek z metamorfizmem cz. L Pos. Nauk. PIG: 31-33.
  • 127. MAXWELL D.T., HOWER J., 1967. High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series. Am. Miner. 52: 843-857.
  • 128. MCDOWELL S.D., ELDERS W.A., 1980. Authigenic layer silicate minerals in borehole Elmer 1, Salton Sea geothermal field, California, U.S.A. Contrib. Mineral. Petrol. 74: 293-310.
  • 129. MERRIMEN R.J., FREY M., 1999. Patterns of very low-grade metamorphism in metapelitic rocks. In: Low-Grade Metamorphism. M. Frey and D. Robinson (eds.). Blackwell Science, Cambridge: 61-107.
  • 130, MERRIMEN R.J., PEACOR D.R., 1999. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Low-Grade Metamorphism. M. Frey and D. Robinson (eds.). Blackwell Science, Cambridge: 10-60.
  • 131. MERRIMEN R.J., ROBERTS B., 1985. A survey of white mica crystallinity and polytypes in pelitic rocks of Snowdonia and Llyn, North Wales. Mineral. Mag. 49: 305-319.
  • 132. MERRIMAN R.J., ROBERTS B., PEACOR D.R., HIRONS S.R., 1995. Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelite microfabrics in the Southern Uplands thrust terrane, Scotland. Journal of Metamorphic Geology 13: 559-576.
  • 133. MEUNIER A., LANSON B., BEAUFORT D., 2000. Vermiculitization of smectite interfaces and illite layer growth as a possibile dual model for illite-smectite illitization In diagenetic environments: a synthesis. Clay Miner. 35: 573-586.
  • 134. MEUNIER A., VELDE B., 2004. Illite. Springer, Berlin, 1-286.
  • 135. MOORE D.M., REYNOLDS R.C., 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford, University Press, Second Edition.
  • 136. MORYC WŁ., 1961. Budowa geologiczna rejonu Lubaczowa. Rocz. PTG 31: 46-79.
  • 137. MORYC WŁ., 1992. Budowa geologiczna utworów podłoża miocenu w rejonie Sędziszów Młp. - Rzeszów i ich perspektywność. Nafta-Gaz 52: 205-223.
  • 138. MORYC WŁ, 1996. Budowa Geologiczna podłoża miocenu w rejonie Pilzno-Dębica- Sędziszów Młp. Nafta-Gaz. 52: 521-550.
  • 139. MORYC WŁ., 2006. Budowa geologiczna podłoża miocenu w rejonie Kraków-Pilzno. Cz. I. Prekambr i paleozoik (bez permu). Nafta-Gaz 5: 197-216.
  • 140. MORYC WŁ., ŁYDKA K., 2000. Sedimentation and tectonics of the Upper Proterozoic-Lower Cambrian deposits of the southern Małopolska Massif (SE Poland). Kwart. Geol. 44: 47-58.
  • 141. MYSTKOWSKI K., ŚRODOŃ J., ELSASS F., 2000. Mean thickness and thickness distribution of smectite crystallites. Clay Miner. 35: 545-557.
  • 142. NADEAU P.H., 1985. The physical dimensions of fundamental clay particles. Clay Miner. 20: 499-514.
  • 143. NADEAU P.H., 2000. The Sleipner Effect: a subtle relationship between the distribution of diagenetic clay, reservoir porosity, permeability, and water saturation. Clay Miner. 35: 185-200.
  • 144. NADEAU P.H., TAIT J.M., MCHARDY W.J., WILSON M.J., 1984a. Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Miner. 19: 67-76.
  • 145. NADEAU P.H., WILSON M.J., MCHARDY W.J., TAIT J.M., 1984b. Interstratified clays as fundamental particles. Science 225: 923-925.
  • 146. NADEAU P.H., WILSON M.J., MCHARDY W.J., TAIT J.M., 1985. The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineral. Mag. 49: 393-400.
  • 147. NAWROCKI J., POPRAWA P., 2006. Development of Trans-European Suture Zone in Poland: from Ediacaran rifting to early Paleozoic accretion. Geol. Quart. 50: 59-76.
  • 148. NAWROCKI J., DUNLAP J., PECSKAY Z., KRZEMIŃSKI L., ŻYLIŃSKA A., FANNING M., KOZŁOWSKI W., SALWA S., SZCZEPANIK Z., TRELA W., 2007. Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Europe): an integrated approach. Journal of the Geological Society of London 164: 405-423.
  • 149. NESCIERUK P., WÓJCIK A., MALATA T., ALEKSANDROWSKI P., 2007. Tektoniczne struktury deformacyjne w iłach krakowieckich sarmatu w Wylewie k. Sieniawy (zapadlisko przedkarpackie): świadectwo młodej przesuwczej aktywności podłoża miocenu. Przegląd Geologiczny 55: 690-698.
  • 150. OBUCHOWICZ Z., TOKARSKI A., WDOWIARZ ST., 1958. Struktura Lubaczowa. Nafta 14: 1-5.
  • 151. PEACOR D., 1992. Diagenesis and low grade metamorphism of shales and slates. In: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy. P.R. Buseck (eds). Mineralogical Society of America. Reviews in Mineralogy 27: 335-380.
  • 152. PHAROAH T.C., 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314: 17-41.
  • 153. POLLASTRO R.M., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon bearing rocks of Miocene to Mississippian age. Clays Clay Miner. 41: 119-133.
  • 154. POLLASTRO R.M., BARKER CH.E., 1986. Application of clay-mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming. In: Roles of Organic Matter in Sediment Diagenesis. D.L. Gautir (eds.). Soc. Econ. Paleontol. Mineral. Spec. Publ. 38: 73 - 83.
  • 155. POWERS M.C., 1967. Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration. Am. Assoc. Petrol. Geol. Bull. 51: 1240-1254.
  • 156. POŻARYSKI W., 1991. The strike-slip terrane model for the North German-Polish Caledonides. Pub. Instit. Geophys., Pol. Acad. Sc., A-19: 3-15.
  • 157. POŻARYSKI WŁ., VIDAL G., BROCHWICZ-LEWIŃSKI W., 1981. Some New data on the Lower Cambrian at S margin of the Holy Cross Mts. Bull. Acad. Pol. Sci., Ser. Sci. Terre 27: 165-174.
  • 158. PRICE K.L., MCDOWELL S.D., 1993. Illite/smectite geothermometry of the Proterozoic Oronto Group, Midcontinent Rift System. Clays Clay Miner. 41: 134-147.
  • 159. RAUSELL-COLOM J. A., WIEWIÓRA A., MATESANZ E., 1991. Relationship between composition and doo, for chlorite. American Mineralogist 76: 1373-1379.
  • 160. REYNOLDS R.C. Jr., 1963. Potasium-rubidium ratios and polytypism in illites and microclines from the clay size fractions of proterozoic carbonate rocks. Geochim Cosmochim Acta 27: 1097-1112.
  • 161. REYNOLDS R.C. Jr., 1980. Interstratified Clay Minerals. In Crystal Structures of Clay Minerals and their X-ray Diffraction Identification. G. W Brindley and G. Brown, eds., Monograph No. 5, Mineralogical Society, London, 249-304.
  • 162. REYNOLDS R.C. Jr., 1985. NEWMOD a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. R.0 Reynolds, 8 Brook Dr., Hanover, New Hampshire.
  • 163. REYNOLDS R.C. Jr., 1992. X-ray diffraction studies of illite/smectite from rocks, <1 µm randomly oriented powders, and <1 µm oriented powder aggregates: the absence of laboratory-induced artifacts. Clays Clay Miner. 40: 387-396.
  • 164. REYNOLDS R.C. Jr., 1994. WILDFIRE: A computer program for calculation of three- dimensional X-ray diffraction patterns for mica polytypes and their disordered variations. Hanover, NH: RC Reynolds, Jr, 8 Brook Rd.
  • 165. REYNOLDS R.C. JR., HOWER J., 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner. 18: 25-36.
  • 166. RYAN P.C., REYNOLDS R.C., 1996. The origin and diagenesis of grain-coating serpentine?chlorite in Tuscaloosa Formation sandstone. Am. Miner. 81: 213-225.
  • 167. RYKA W., MALISZEWSKAA., 1991. Słownik petrograficzny. Wydawnictwa Geologiczne. Warszawa: 416 p.
  • 168. SAMSONOWICZ J., 1955. O górnym prekambrze (ryfeju) w Polsce. Prz. Geol. 3: 588-589.
  • 169. SANDLER A., HARLAVAN Y., 2006. Early diagenetic illitization of illite-smectite in Cretaceous sediments (Israel): evidence from K-Ar dating. Clay Minerals 41: 637-658.
  • 170. SATO T., MURAKAMI T., WATANABE T., 1996. Change in layer charge of smectites and smectite layers in illite/smectite during diagenetic alteration. Clays Clay Miner. 44: 460-469.
  • 171. SCHMID R., FETTES D., HARTE B., DAVIS E., DESMONS J., MEYER-MARSILIUS H-J. and SIIVOLA J., 2007. A systematic nomenclature for metamorphic rocks: 1. How to name a metamorphic rock. Recommendations by the IUGS Subcomimission on the Systematics of Metamorphic Rocks. SCMR website (www.bgs.ac.uk/SCMR).
  • 172. SHATA S., HESSE R., MARTIN R.F., VALI H., 2003. Expandability of anchizonal illite and chlorite: Significance for crystallinity development in the transition from diagenesis to metamorphism. Am. Mineral. 88: 748-762.
  • 173. SHIROZU H., BAILEY S.W., 1965. Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. Amer. Mineral. 50: 868-885.
  • 174. SHIROZU H., BAILEY S.W., 1966. Crystal structure of a two-layer Mg-vermiculite. Amer. Mineral. 51: 1124-1143.
  • 175. SMULIKOWSKI W., DESMONES J., HARTE B., SASSI F.P. and SCHMIDT R., 2007. A systematic nomenclature for metamorphic rocks: 2. Types, grade and facies of inetamorphism. Recomendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. SCMR website (www.bgs.ac.uk/SCMR).
  • 176. STEMULAK J., JAWOR E., 1963. Wgłębna budowa geologiczna przedgórza Karpat w obszarze na zachód od Dunajca i Wisły. Kwart. Geol. 7: 169-186.
  • 177. STOCH L., 1970. Minerały ilaste. Wydawnictwa Geologiczne, Warszawa.
  • 178. STONE P., KIMBELL G.S., HENNEY P.J., 1997. Basement control on the location of strike-slip shear in the Southern Uplands of Scotland. Journal of the Geological Society, London 154: 141-144.
  • 179. SZCZEPANIK Z., 1997. Preliminary results of thermal alternations of the Cambrian acritarchs in the Holy Cross Mts. Geol. Quart. 41: 257-264.
  • 180. SZCZEPANIK Z., TRELA W., SALWA S., 2004. Kambr górny we wschodniej części regionu kieleckiego Gór Świętokrzyskich - komunikat wstępny. Prz. Geol. 52: 895-898.
  • 181. SUCHA V., KRAUS I., GERTHOFFEROVA H., PETES J., SEREKOVA M., 1993. Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Miner. 28, 243-253.
  • 182. ŚRODOŃ J., 1980. Precise identification of illite/smectite interstratification by X-ray powder diffraction. Clays Clay Miner. 28: 401-411.
  • 183. ŚRODOŃ J., 1981. X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Miner. 16: 297-304.
  • 184. ŚRODOŃ J., 1984. X-ray powder diffraction identification of illitic materials. Clays Clay Miner. 32: 337-349.
  • 185. ŚRODOŃ J., 1987. Diagenetic alteration of clay minerals in Kuźmina-1 profile and the position of oil window. Unpublished report (in Polish), 1-18.
  • 186. ŚRODOŃ J., 1995. Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Studia Geol. Pol. 108: 9-20.
  • 187. ŚRODOŃ J., 1996. Minerały ilaste w procesach diagenezy. Przegląd Geologiczny 44: 604-607.
  • 188. ŚRODOŃ J., 1999. Nature of mixed-layer clays and mechanism of their formation and alteration. Annu. Rev. Earth Planet. Sci. 27: 19-53.
  • 189. ŚRODOŃ J., 2007. Illitization of smectite and history of sedimentary basins. In: Invited Lectures of the 11th EUROCLAY Conference, Aveiro, Portugal: 74-82.
  • 190. ŚRODOŃ J., ANDREOLI C., ELSASS F., ROBERT M., 1990. Direct HRTEM measurement of expandability of mixed-layer illite/smectite in bentonite rock. Clays Clay Miner. 38: 373-379.
  • 191. ŚRODOŃ J., KOTARBA M., BIRON A., SUCH P., CLAUER N., WÓJTOWICZ A., 2006. Diagenetic history of the Podhale-Orava basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Minerals 41: 747-770.
  • 192. ŚRODOŃ J., EBERL D.D., 1984. Illite. In Micas. Revies in Mineralogy 13, ed. S.W. Bailey, pp. 495-544. Washington, DC: Mineral. Soc. Am.
  • 193. ŚRODOŃ J., EBERL D.D., DRITS V., 2000. Evolution of fundamental particle size during illitization of smectite and implications for the illitization mechanism. Clays Clay Miner. 48: 446-459.
  • 194. ŚRODOŃ J., ELSASS F., MCHARDY W.J., MORGAN D.J., 1992. Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner. 27: 137-158.
  • 195. TETTENHORSTR. T., CORBATO C.E., 1993. Quantitative analysis of mixtures of IM and 2M1 dioctahedral micas by X-ray diffraction. Clays Clay Miner. 41: 45-55.
  • 196. TOMCZYK H., 1963. Ordowik i sylur w podłożu Zapadliska Przedkarpackiego. Rocz. PTG 33: 289-320.
  • 197. TOMCZYK H., 2000. Główne fazy rozwoju Gór Świętokrzyskich. Pr. Inst. Geogr. WSP w Kielcach 4: 67-91.
  • 198. VELDE B., MEDHIOUB M., 1988. Approach to chemical equilibrium in diagenetic chlorite. Contrib. Mineral Petro198: 122-127.
  • 199. VELDE B., LANSON B., 1993. Comparison of I/S transformation and maturity of organic matter at elevated temperatures. Clays Clay Miner. 41: 178-183.
  • 200. VELDE B., VASSEUR G., 1992. A kinetic model of the smectite-to-illite transformation based on diagenetic mineral series. Am. Mineral. 77: 967-976.
  • 201. WAKSMUNDZKA M., 1995. Wykorzystanie materiału palinologicznego do określania stopnia metamorfizmu materii organicznej metodą TAI. Prz. Geol. 43: 107-109.
  • 202. WALKER J., 1989. Polytypism of chlorite in very low grade metamorphic rocks. Am. Miner. 74: 738-743.
  • 203. WALKER J. R., 1993. Chlorite polytype geothermometry. Clays Clay Miner. 41: 260-267.
  • 204. WALKER J. R., THOMPSON G.R., 1990. Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California. Clays and Clay Minerals 38: 315-321.
  • 205. WALSHE J.L., 1986. A six-component chlorite solid solution model and the conditions of chlorite formation in hydro- thermal and geothermal systems. Econ. Geol. 81:681-703.
  • 206. WARR L.N., 1996. Standardized clay mineral crystallinity data from the very low- grade metamorphic facies rocks of southern New Zealand. European Journal of Mineralogy 8: 115-127.
  • 207. WARR L.N., GREILING R.O., ZACHRISSON E., 1996. Thrust related very low grade metamorphism in the marginal part of an orogenic wedge, Scandinavian Caledonides. Tectonics 15: 1213-1229.
  • 208. WARR L.N., PRIMMER T.J., ROBINSON D., 1991. Variscan very low-grade metamorphism in southwest England: diastathermal and thrust-related origin. Journal of Metamorphic Geology 9: 751-764.
  • 209. WARR L.N., RICE A.H.N., 1994. Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J. Metamorphic Geol. 12: 141-152.
  • 210. WEAVER C.E., 1989. Diagenesis, metamorphism. In Clays, Muds and Shales. Developments in Sedimentology 44, Elsevier, Amsterdam, Oxford: 417-520.
  • 211. WEBER K., 1981. Kinematic and metamorphic aspects of cleavage formation in very low-grade metamorphic slates. Tectonophysics 78: 291-306.
  • 212. WEISS Z., 1991. Interpretation of chemical composition and X-ray diffraction patterns of chlorites. Geologica Carpathica 42: 93-104.
  • 213. WEISS Z., DUROVIC S., 1983. Chlorite polytypism. II. Classification and X-ray identification of trioctahedral polytypes. Acta Cryst. B39: 552-557.
  • 214. WENSAAS L., SHOW H.F., GIBBONS K., AAGAARD P., DYPVIC H., 1994. Nature and causes of overpressuring in mudrocks of the Gullfaks Area, North Sea. Clay Miner. 29: 439-450.
  • 214a. WHITNEY G., 1990. Role of water in the smectite-to-illite reaction. Clays Clay Miner. 41: 219-239.
  • 215. WHITNEY C., 1990. Role of water in the smectite-to-illite reaction. Clays and Clay Minerals, 38: 343-350.
  • 216. WHITNEY G., VELDE B., 1993. Changes in particle morphology during illitization: an experimental study. Clays Clay Miner. 41: 209-218.
  • 217. WIESER T., 1967. Charakterystyka petrograficzna odwiertu Cisowa IG-1. Kwart Geol. 11: 451-453.
  • 218. WIESER T., 1989. Petrografia skał podłoża i pokrywy mioceńskiej z otworu wiertniczego Kuźmińa-1. Kwartalnik Geologiczny 33: 363-364.
  • 219. WIESER T., OLSZEWSKA B., 1988. Konsultacja i opracowanie stratygrafii i petrografii dolnego odcinka odwiertu Kuźmina-1. Unpublished report.
  • 220. WIEWIÓRA A., WEISS Z., 1990. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals 25: 83-92.
  • 221. WIEWIÓRA A., WILAMOWSKI A., 1996. The relationship between composition and b for chlorite. Geologica Carpathica - Series Clays 5: 79-87.
  • 222. WIEWIÓRA A., WILAMOWSKI A., ŁĄCKA B., KUŹNIARSKI M., GRABSKA D., 1998. Chamosite from oolitic ironstones: the necessity of a combined XRD-EDX approach. Can. Mineral. 36: 1547-1557.
  • 223. WINCHESTER J.A., PHARAOH T.C., VERNIERS J., 2002. Paleozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigation. In: Winchester J.A., Pharaoh T.C., Verniers J. (eds): Palaeozoic amalgamation of Central Europe. Geological Society, London, Special Publications, 201: 1-18.
  • 224. YARDLEY B. W.D., 1989: An Introduction to Metamorphic Petrology. Longman Earth Science Series. New York.
  • 225. YODER H.S., EUGSTER H.P., 1955. Synthetic and natural muscovites. Geochim. Cosmochim. Acta, 8: 225 - 280
  • 226. ZANE A., SASSI R., GUIDOTTI C.V., 1998. New data on metamorphic chlorite as a petrogenetic indicator mineral, with special regard to greenschist-facies rocks. Can. Mineral. 36: 713-726.
  • 227. ŻABA J., 1999. Ewolucja strukturalna utworów dolnopaleozoicznych w strefie granicznej bloków górnośląskiego i małopolskiego. Pr. Państw. Inst. Geol. 166: 1-162.
  • 228. ŻELAŹNIEWICZ A., 1998. Rodinian-Baltican link of the Neoproterozoic orogen in southern Poland. Acta Universitatis Carolinae, Geologica 42: 509-515.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHM-0052-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.