
1. INTRODUCTION

Predictive control is often used in industry and a large num-
ber of implementation algorithms has been presented in liter-
ature. Most of these control algorithms use process model to
predict the future behavior of a plant and because of this, the
model predictive control (MPC) is often used. The most im-
portant advantage of the MPC technology comes from the
process model itself which allows the controller to deal with
an exact copy of the real process dynamics, implying a much
better control quality. The constraints with respect to input
and output signals are directly considered in the control cal-
culation, resulting in very rare or even no constraint violat-
ion. Another important characteristic, which contributes to
the success of the MPC technology, is that the MPC algorith-
ms consider plant behavior over a future horizon in time
(Fig. 1). Thus, the disturbances can be predicted and elimina-
ted. This permits the controller to drive the output more clo-

sely to the reference trajectory. Although most processes
usually contain complex nonlinearities, most of the MPC al-
gorithms are based on a linear model of the process. The aim
for most of the applications is to maintain the system at a de-
sired steady state, rather than moving rapidly between diffe-
rent operating points, so a precisely identified linear model is
sufficiently accurate in the neighborhood of a single operati-
ng point. Often, the output of the controller is obtained using
software optimization techniques and the control algorithm
cannot always be used in manufacturing applications. As li-
near models are reliable from this point of view, they will
provide most of the benefits with MPC technology. If the
process is highly nonlinear and subject to disturbances of a
high frequency a nonlinear model is necessary to describe
the behavior of the process. Also in servo control problems
where the operating point changes frequently, a nonlinear
model of the plant is indispensable.
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SUMMARY

In this paper predictive neural network controller is applied to control rotational speed of hydraulic engine hydrostatic
transmission. It describes the functional structure and design principle of predictive neural network controller. This pre-
dictive neural network control method provides control linear and nonlinear systems. In this case feed forward network
with one hidden layer was used. The control objective is to minimize a control cost function. Computer simulations are
provided for illustration and verification. As control plant the hydrostatic transmission was chosen. The control by using
the hydraulic drive is the time variant process, consequential to inconstancy parameters of hydraulic liquid (for instance:
kinematic viscosity, compressibility and thickness). The efficiency of pump control is realized by use The electrohydraulic
servo – system distinguish itself by a nonlinear characteristic. Finally, a predictive neural network method to control this
kind of object is successfully applied.

Keywords: neural network control, nonlinear object, predictive control

ZASTOSOWANIE REGULATORA NEURONOWEGO Z PREDYKCJ¥
DO STEROWANIA PRZEK£ADNI¥ HYDROSTATYCZN¥

W artykule zaprezentowano koncepcjê regulatora predykcyjnego bazuj¹cego na sieciach neuronowych, wykorzystanego
do sterowania prêdkoœci¹ obrotow¹ silnika hydraulicznego przek³adni hydrostatycznej. Regulator zastosowany w pre-
dykcyjnym uk³adzie regulacji by³ strojony przy u¿yciu sztucznych sieci neuronowych. Do badañ wykorzystano sieæ jedno-
kierunkow¹, jednowarstwow¹. Zasadniczym zadaniem uk³adu jest minimalizacja okreœlonej funkcji kryterialnej. Ostatnia
czêœæ artyku³u jest zestawieniem wyników badañ zaproponowanego uk³adu regulacji do sterowania obiektem nieliniowym.
Jako obiekt do badañ wykorzystano przek³adniê hydrostatyczn¹. Zbudowana jest ona z pompy o zmiennej wydajnoœci i sil-
nika o sta³ej ch³onnoœci. Do sterowania wydajnoœci¹ pompy wykorzystano elektrohydrauliczny uk³ad steruj¹cy. Uk³ad ten
sk³ada siê z si³ownika hydraulicznego sprzê¿onego t³oczyskiem z wychylnym wirnikiem pompy oraz elektrohydraulicznego
serwozaworu przep³ywowego. Obiekt ze wzglêdu na swoje w³aœciwoœci jest nieliniowy i niestacjonarny.

S³owa kluczowe: sterowanie predykcyjne, obiekt nieliniowy, sieci neuronowe
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Recently, neural networks have become an attractive tool
in the construction of models for complex non-linear sys-
tems, because of their inherent ability to learn and approxi-
mate non-linear functions. Most of the non-linear predictive
control algorithms imply the minimization of a cost function,
by using computational methods for obtaining the optimal
command to be applied to the process. The implementation
of the non-linear predictive control algorithms becomes very
difficult for real-time control because the minimization algo-
rithm must converge at least to a sub-optimal solution and
the operations involved must be completed in a very short
time (corresponding to the sampling period) (Lazar and
Pastravenu 2002).

This paper analyzes a neural based non-linear predictive
controller, which eliminates the most significant obstacles
for non-linear MPC implementation by developing a non-
-linear model, designing a neural predictor and providing
a rapid, reliable solution for the control algorithm (Lazar and
Pastravenu 2002).

2. THE NEURAL NETWORK PREDICTIVE
CONTROL SCHEME

The first stage of model predictive control is to train a neural
network to represent the forward dynamics of the plant. The
prediction error between the plant output and the neural ne-
twork output is used as the neural network training signal.

The following block diagram illustrates the model predic-
tive control process (Fig. 2). The controller consists of the
neural network plant model and the optimization block. The
optimization block determines the values of uT that minimize
J, and then the optimal u is input to the plant.

The objective of the predictive control strategy using neu-
ral predictors in two ways: to estimate the future output of the
plant and to minimize a cost function based on the error be-

tween the predicted output of the processes and the reference
trajectory. The cost function value, which may be different
from case to case, is minimized in order to obtain the opti-
mum control input that is applied to the nonlinear plant (La-
zar and Pastravenu 2002).

In most of the predictive control algorithms a squared
form is used for the cost function
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with requirements:

�u k i k( – ) ,� �1 0 1 � Nu < i � Np (2)

where:

Nu – control horizon,
N1 – minimum prediction horizon,
Np – prediction horizon,

i – order of the predictor,
r – reference trajectory,

� – weight factor,

� – differential operator.

The command u may be subject to amplitude constraints

u u k i k umin max( ) ,� � � i = 1, ..., Nu–1 (3)

The cost function is often used with the weight factor � = 0.
A very important parameter in the predictive control strategy
is the control horizon Nu, which specifies the present time,
since when the output of the controller should be kept at
a constant value.

The use of neural networks for nonlinear process model-
ing and identification is justified by their capacity to approxi-
mate the dynamics of non-linear systems including those
with high nonlinearities or dead time. In order to estimate the
nonlinear process, the neural network must be trained until
the optimal values of the weight vectors (i.e. weights and bi-
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Fig. 2. Block diagram with control system: yr – desired response,
r – neural network model response, uT – tentative control signal

Fig. 1. Base of predictive control over a future horizon in time
(Tatjewski 2002)



ases in a vector form) are found. In most applications,
feedforward neural networks are used, because the training
algorithms are less complicated (Lazar and Pastravenu
2002).

Figure 3 illustrates a one-hidden-layer feedforward neu-
ral network.

The arrows at the left side in Figure 3 symbolize weights
in the network. The input layer consists solely of the inputs to
the network. A hidden layer, consists of an arbitrary number
of neurons, or hidden units placed in parallel. Each neuron
performs a weighted summation of the inputs. This signal
is transferred through a nonlinear activation function (sig-
moid).

Mathematically the functionality of a hidden neuron is
described by
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The arrows feeding into the neuron are the symbolic rep-
resentation of the weights wj and biases bj.

The output of this network is given by
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where:

n – number of inputs,
nb – number of neurons in the hidden layer.

The variables { , , , }w x b bij
l

j ji
l 2 are the parameters of the

network model that are represented together by the parame-
ter vector.

The back propagation algorithm used optimization gradi-
ent method to learning weights. The cost function is defined
as the sum of the square difference between the input signal
yk and set value dk.

The form of cost function depends on number of learning
samples. The following expression is for many learning sam-
ples j (were j = 1, 2, ..., p)
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3. SIMULATION TESTS

To the research model of hydrostatic transmission was used.
The hydrostatic transmission consists of variable efficiency
pump and a radial engine with constant working absorpti-
vity. Pump efficiency was controlled using an electrohydra-
ulic control system, comprising a hydraulic cylinder coupled
with a pump rotor via a piston rod and a hydraulic servo-va-
lve. For a mathematical model has been assumed that: a hy-
drostatic transmission is a system with lumped constants.

The static and dynamic features of the transmission do
not depend upon the direction of the hydraulic engine rota-
tion. Thus, a mathematical model was developed for only
one rotation direction. It is assumed that the transmission is
in a thermally balanced state, and that the module of the vol-
ume elasticity is constant.

The angular velocity of the main pump shaft is constant
and pressure drop in the hydraulic cables is negligible. Leaks
in the pump and in the engine can be summed, and neither the
pump’s efficiency, nor the absorptivity of the hydraulic en-
gine depends upon their shaft’s rotation angle. The safety
valve is closed at all times. However the object is nonlinear
and its control varying in time is very difficult. For that reason
the neural network predictive control strategy was chosen.
The software for hydrostatic transmission control system
was developed in MATLAB/Simulink (Nawrocka 2006).

Figure 4 shows the neural network control structure witch
was used in simulation tests.

In the first step the signal for training neural network was
generated. In the next step the training data for neural net-
work predictive control were generated (Fig. 5). After that
the validation data for neural network predictive control
were prepared (Fig. 6).

The last part of the research consisted of the test perfor-
med to the trained neural network. A step response for the sys-
tem with neural network controller is presented in Figure 7.
There are three values of rotational speed, set value are 300,
500 and 700 rpm.
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Fig. 4. The neural network control structure

Fig. 3. A feedforward network with one hidden layer



4. CONCLUSION

In this paper the predictive neural network control has been
studied. The neural network controller is designed by minim-
izing an MPC cost function. This kind of controller has ad-

vantages over standard nonlinear model predictive control.
The neural network controller has substantially reduced
on-line computational requirements. Because the neural tra-
ining depends mainly on the network complexity, not on the
length of the control horizon.

As a control object the hydrostatic transmission was ana-
lyzed. This kind of object is very difficult to control because
of its properties. Especially nonlinearities and non-stationary
behavior cause a problem during control design process.
Simulation tests with MPC algorithm provide a satisfied
result.
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Fig. 6. Validation data for NN predictive control

Fig. 7. Results of simulation tests

Fig. 5. Training data for NN predictive control


