Warianty tytułu
Języki publikacji
Abstrakty
Polyethylene terephtalate was modified by UV light irradiation produced by a Xe2-excimer lamp for 10, 20 or 30 min in an acetylene atmosphere. For creation of microdomains for selective cell adhesion, a contact nickel mask (apertures of the diameter of 500 m, centre-to-centre distance 2 mm) was used. The material was then seeded with rat aortic smooth muscle cells (passage 3, 17 000 cells/cm square). After 1, 3 and 7 days of cultivation, the cells were homogeneously distributed on the samples without any preference of the irradiated microdomains. Moreover, on day 1, the number of initially adhered cells was similar on all tested samples. However, on day 3, the number of cells on the irradiated samples was significantly higher than that on control unmodified PET and increased proportionally to the time of exposure to UV light. On day 7 after seeding, however, the cell number on the unmodified PET exceeded the value on all irradiated samples. In the second set of experiments, polyethylene (PE) was irradiated by Ar+ ions in order to create the adhesive microdomains (dose 10\12-10\14 ions/cm square, energy 150 and 15 keV, contact mask with holes of 100 m diameter and distance 200 m). The highest selectivity of the adhesion and growth of rat aortic smooth muscle cells (89% of all cells) was found on the microdomains created at the energy of 150 keV and the dose of 3x10\12 ions Ar+. The lowest selectivity (30%) occurred on samples irradiated with 150 keV Ar+ ions of the dose of 3x10\14 ions/cm square. Therefore, both methods seem to be suitable for modification of materials with highly hydrophobic surfaces in purpose to increase the cell colonization, for example when constructing bioartificial vascular replacements. The second method can be also used for the creation of domains for a regionally selective adhesion and growth of cells on biomaterials.
Czasopismo
Rocznik
Tom
Strony
7-10
Opis fizyczny
Bibliogr. 8 poz., rys., wykr.
Twórcy
autor
- Institute of Physiology, Acad. Sci. CR, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic, Parizek.M@seznam.cz
autor
- Institute of Physiology, Acad. Sci. CR, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic, lucy@biomed.cas.cz
autor
- Institute of Physiology, Acad. Sci. CR, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
autor
- Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 – Dejvice
autor
- Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 – Dejvice
autor
- Angewandte Physik, Johannes Kepler Universität, Altenbergerstr. 69, A-4040 Linz, Austria
Bibliografia
- [1] Bacakova L., Svorcik V., Rybka V., Micek I., Hnatowitz V., Lisa V., Kocurek F.: Biomaterials 17: 1121-1126, 1996.
- [2] Bacakova L., Mares V., Bottone M. G., Pelliciari C., Lisa V., Svorcik V.: J. Biomed. Mater. Res., 49: 369-379, 2000.
- [3] Bacakova L., Walachova K., Svorcik V., Hnatowitz V.: J. Biomater. Sci. Polymer Edn., Vol. 12, No. 7: 817-834, 2001.
- [4] Bacakova L., Noskova L., Koshelyev H., Biederman H.: Inżynieria Biomateriałów-Engineering of Biomaterials, 7 [37]: 18-20, 2004.
- [5] Kubova O., Bacakova L., Svorcik V.: Biocompatibility of carbon layer on polymer, Mater Sci. Forum 482: 247-250, 2005.
- [6] Mikulikova R., Moritz S., Gumpenberger T., Olbrich M., Romain CH., Bacakova L., Svorcik V., Heitz J.: Biomaterials 26: 5572-5580, 2005.
- [7] Rockova-Hlavackova K., Svorcik V., Bacakova L., Dvorankova B., Heitz J., Hnatowitz V.: Nucl. Instr. Meth. Phys. Res., B 225: 275-282, 2004.
- [8] Svrocik V., Rockova K., Ratajova E., Heitz J., Huber N., Bauerle D., Bacakova L., Dvorankova B., Hnatowitz V.: Nucl. Inst.. Meth. Phys. Res., B 217: 307-313, 2004
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH5-0008-0105