Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Proste dowody trzech twierdzeń o punktach stałych
Języki publikacji
Abstrakty
The paper concerns fixed point theorems for multivalued mappings. They satisfy some continuity assumptions while the sets on which these mappings act, are suitably "regular". The theorems belong to the direction initialized by Kakutani and Fan, and the final result of these part of theory is the theorem of Himmelberg being an extension of the classical result of Hukuhara and Tichonoff to the case of multivalued mappings. All of them are the fundamental results in the fixed point theory. Himmelberg requires the locally convex space under consideration to be Hausdorff. The autor, in his earlier papers, has obtained several results which do not contain this restriction - "usual" mapping must become multivalued if one assumes them to have closed values and the topological space is not Hausdorff. An intrinsic problem is the complexness of the proofs. In the presented paper these proofs are possibly natural and they are based on the theorem of Knaster - Kuratowski - Mazurkiewicz concerning the nonempty intersection of subsets of a simplex. What is more, the reasonings are short and relatively clear. Theorem 5 is an extension of the classic result of Himmelberg, and Theorem 12 extends Theorem 5 to the case of the weakly upper semicontinuous mappings (wusc) and, on the other hand, it is an extension of the theorem Lasry - Robert concerning the upper hemicontinuous mapping (uhc). Theorem 9 in turn is an analog of Theorem 5 for convex structure called "weed".
Praca dotyczy twierdzeń o punktach stałych dla odwzorowań wielowartościowych spełniających pewne założenia ciągłości, przy czym zbiory, na których te odwzorowania działają, są odpowiednio "regularne". Twierdzenia należą do nurtu wytyczonego przez Kakutaniego i Fana, a jego finalnym rezultatem jest twierdzenie Himmelberga uogólniające klasyczny wynik Hukuhary i Tichonova na przypadek odwzorowań wielowartościowych. Wszystkie te twierdzenia to są twierdzenia podstawowe w teorii punktów stałych. Wynik Himmelberga zawiera założenie, że przestrzeń lokalnie wypukła jest przestrzenią Hausdorffa. Autor, we wcześniejszych pracach, uzyskał szereg twierdzeń pozbawionych tego założenia - wielowartościowość staje się wtedy naturalną konsekwencją założenia domkniętości wartości odwzorowań. Istotnym problemem jest także złożoność dowodów. W prezentowanej pracy dowody są prowadzone w możliwie naturalny sposób i opierają się na twierdzeniu Knastera - Kuratowskiego - Mazurkiewicza o iloczynie niepustym. Ponadto przedstawione rozumowania cechuje zwięzłość i przejrzystość. Twierdzenie 5 jest uogólnieniem klasycznego twierdzenia Himmelberga, a Twierdzenie 12 rozszerza Twierdzenie 5 na przypadek odwzorowań słabo górnie półciągłych (wusc) i stanowi uogólnienie twierdzenia Lasry - Roberta dla odwzorowań górnie hemiciągłych (uhc). Z kolei Twierdzenie 9 jest analogonem Twierdzenia 5 dla struktury wypukłej zwanej "chwastem" (ang. weed).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21-26
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- University of Mining and Metallurgy, Department of Applied Mathematics, Kraków, pasicki@wms.mat.agh.edu.pl
Bibliografia
- [1] Dugundji J., Granas A.: Fixed point theory, Vol. I. Warszawa, PWN 1982
- [2] Himmelberg C.J.: Fixed points of compact multifunctions. J. Math. Anal. Appl., 38,1972, 205-207
- [3] Kelley J.L.: General topology. New York, Heidelberg, Berlin, Springer 1975
- [4] Kelley J.L., Namioka I.: Linear topological spaces. Berlin, Springer 1976
- [5] Knaster В., Kuratowski К., Mazurkiewicz S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fund. Math., 14, 1929, 132-137
- [6] Lassende M.: Sur le principe KKM. C. R. Acad. Sei. Paris, 310, 1990, 573-576
- [7] Lasry J.M., Robert R.: Degré pour les fonctions multivoques et applications. C. R. Acad. Sei. Paris, 280, 1975,1435-1438
- [8] Pasicki L.: A fixed point theory and some other applications of weeds. Opuscula Math., 7, 1990,1-98
- [9] Pasicki L.: Fixed point theorems for uhc mappings. Opuscula Math., 12, 1993, 69-75
- [10] Pasicki L.: On the KKM theorem. Bull. Pol. Ac.: Math., 43, 1995, 1-8
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0094