Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 23 | 99-115
Tytuł artykułu

On some complex spline operators

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the space Sn(ΔN) of splines in the complex (or real) variable z of degree n with respect to a given partition ΔN of a rectifiable Jordan curve Γ. We define an operator QN : LP(Γ) → Sn(ΔN), such that QN f = f for f ∈ Sn(ΔN), by means of a system of step functions "biorthogonal" to B-splines and then we estimate the order of approximation of f by QN f in the space Ck(Γ), k ≤ n. We apply the obtained results to approximation of analytic functions in the interior D of a Jordan curve Γ and of class Ck on D (k = 0,..., n - 1) by analytic splines defined in the interior Γ by means of the Cauchy integral. Then we consider the special case, where Γ is the interval [0, 1] and we estimate the order of approximation of f by QN f in the space Wnp([0, 1]) for 1 ≤ p ≤ ∞.
Wydawca

Rocznik
Tom
Strony
99-115
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
Bibliografia
  • [1] Ahlberg J.H.: Splines in the complex plane, [in:] Approximation with special Emphasis on Spline Functions. Schoenberg I. J. (ed.), New York, Academic Press 1969, 1-27
  • [2] Ahlberg J. H., Nilson E. N., Walsh J.L.: Complex cubic splines. Trans. Amer. Math. Soc, 129, 1967, 391-413
  • [3] de Boor C.: On local linear functionals which vanish at all B-splines but one [in: Theory of Approximation with Applications. Law A. and Sahney A. (eds.), New York, Academic Press 1976, 120-145
  • [4] de Boor C.: Splines as linear combinations of B-splines. [in:] Approximation Theory II. Lorenz G. G., Chui C.K. and Schumaker L.L. (eds.) New York, Academic Press 1976, 1-47
  • [5] de Boor C.: A practical Guide to Splines. New York, Springer-Verlag 1978
  • [6] Ciesielski Z.: Properties of the orthonormal Franklin system. Studia Math., 23(1963), 141-157
  • [7] Ciesielski Z.: Constructive function theory and spline systems. Studia Math., 53(1975), 278-302
  • [8] Ciesielski Z.: Lectures on Spline Theory. Gdańsk University, 1979 (in Polish)
  • [9] Demko S.: Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal., 14(4) (1977), 616-619
  • [10] De Vore R. A.: Degree of approximation, [in:] Approximation Theory II. Lorenz G.G., Chui C.K. and Schumaker L.L. (eds.) New York, Academic Press 1976, 117-161
  • [11] Johnen H.: Inequalities connected with the moduli of smoothness. Math. Ves., 9(1972), 289-303
  • [12] Kashin B. S., Saakjan A. A.: Orthogonal Series. Moscow, Nauka 1984 (in Russian) [13] Leja F.: Theory of Analytic Functions. Warszawa, 1957 (in Polish)
  • [14] Pommerenke Ch.: On the derivative of a polynomial. Michigan Math. J., 6, 1959, 373-375
  • [15] Privalov I.I.: Boundary Properties of Analytic Functions. Moscow, Gostekhizdat 1950 (in Russian)
  • [16] Smirnov V. I., Lebedev N. A.: Constructiv Theory of Functions of Complex Variable. Moscow, Nauka 1964 (in Russian)
  • [17] Subbotin Yu. N., Stechkin S.B.: Splines in the Numerical Analysis. Moscow, Nauka 1976 (in Russian)
  • [18] Tamrazov P.M.: Smoothness and Polynomial Approximation. Kiev, Naukova Dumka 1975 (in Russian)
  • [19] Timan A. F.: Theory of Approximation of Functions of a Real Variable. Moscow, Fizmatgiz 1960 (in Russian)
  • [20] Wronicz Z.: Approximation by complex splines. Zeszyty Nauk. Uniw. Jagiellon., Prace Mat., 20(1979), 67-88
  • [21] Wronicz Z.: Interpolation by complexs cubic splines, [in:] Constructive Function Theory"77, Sendov B. and Vacov D. (eds.), Publ. House of the Bulgar. Acad. Sci., Sofia 1080, 549-558
  • [22] Wronicz Z.: On approximation by complex splines, [in:] Constructive Function Theory'81, Sendov B., Boyanov B., Vacov D., Maleev R., Markov S. and Boyanov T. (eds.), Publ. House of the Bulgar. Acad. Sci. Sofia 1983, 577-583
  • [23] Wronicz Z.: Systems conjugate to biorthogonal spline systems. Bull. Polish Acad. Sci. Math., 36(1988), 273-278
  • [24] Wronicz Z.: Chebyshevian Splines. Dissertationes Mathematicae, Warszawa 1990
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.