Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | Vol. 23 | 25-47
Tytuł artykułu

On the circle criterion for boundary control systems in factor form

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we return to the origins of the circle criterion initiated by Irwin Sandberg nearly forthy years ago. A version of the Leray-Schauder alternative is applied to get an existence of an abstract Hammerstein output equation for the closed-loop system. This existence result completes Sandberg's method based on using the Banach fixed-point theorem. It is shown that the assertion of the circle criterion can be strengthened by adding a characterization of an asymptotic behaviour of the state trajectories. Results are being compared with a recent version of the circle criterion for boundary control systems in factor form. Some prospects for further studies are also suggested.
Wydawca

Rocznik
Tom
Strony
25-47
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
Bibliografia
  • [1] Bartle R. G.: The Elements of Integration. New York, J. Wiley. 1966; Bartle R. G.: The Elements of Integration and Lebesgue Measure. New York, J. Wiley 1995 contains a corrected reprint as Chapters 1-10
  • [2] Butzer P. L., Nessel R. J.: Fourier Analysis and Approximation. Vol. I: One -Dimensional Theory. Basel, Birkhauser 1971
  • [3] Curtain R. F.: Regular linear systems and their reciprocals: applications to Riccati equations. Systems and Control Letters, 4 9 (2003), pp. 81-89
  • [4] Curtain R. F.: Riccati equations for stable well-posed linear systems: the generic case, (to appear in SIAM Journal Control and Optimization)
  • [5] Curtain R. F., Logemann H. and Staffans O.: Stability results of Popov-type for infinite - dimensional systems with applications to integral control. Journal of the London Mathematical Society, 86 (2003), pp. 779-816
  • [6] Curtain R. F., Zwart H.: An Introduction to Infinite-Dimensional Linear Systems Theory. New York, Springer 1995
  • [7] Hoffman K.: Banach Spaces of Analytic Functions. Englewood Cliffs, Prentice -Hall 1962
  • [8] Grabowski P.: On the spectral - Lyapunov approach to parametric optimization of DPS. IMA Journal of Mathematical Control and Information, 7 (1990), pp. 317-338
  • [9] Grabowski P.: Admissibility of observation functionals. International Journal of Control, 62, 1995, 1161-1173
  • [10] Grabowski P., Callier F. M.: Admissibility of observation operators. Semigroup criteria of admissibility. Journal of Integral Equations and Operator Theory, 25 (1996), pp. 182-198
  • [11] Grabowski P., Callier F.M.: Admissible observation operators. Duality of observation and control using factorizations. Dynamics of Continuous, Discrete and Impulsive Systems, 6 (1999), pp. 87-119
  • [12] Grabowski P., Callier F.M.: On the circle criterion for boundary control systems in factor form: Lyapunov approach. Facultes Universitaires Notre - Dame de la Paix a Namur, Publications du Departement de Mathematique, Research Report 07 (2000), FUNDP, Namur, Belgium
  • [13] Grabowski P., Callier F.M.: On the circle criterion for boundary control systems in factor form: Lyapunov stability and Lur'e equations. Facultes Universitaires Notre - Dame de la Paix a Namur, Publications du Departement de Mathematique, Research Report 05 (2002), FUNDP, Namur, Belgium
  • [14] Grabowski P., Callier F. M.: Boundary control systems in factor form: Transfer functions and input-output maps. Integral Equations and Operator Theory, 41 (2001), pp. 1-37
  • [15] Grabowski P., Callier F. M.: Circle criterion and boundary control systems in factor form: Input-output approach. International Journal of Applied Mathematics and Computer Science, 11 (2001), pp. 1387-1403
  • [16] Halmos P. R., Sunder V. S.: Bounded Integral Operators on L2 Spaces. Berlin, Springer 1978
  • [17] Hansen S., Weiss G.: The operator Carleson measure criterion for admissibility of control operators for diagonal semigroups on l2. Systems and Control Letters, 16 (1991), pp. 219-227
  • [18] Jacob B., Partington J.R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups. Journal of Integral Equations and Operator Theory, 40 (2001), pp. 231-243
  • [19] Krasnosel'skii M. A.: Topological Methods in the Theory of Nonlinear Integral Equations, Moscow, GITTLI, 1956 (in Russian). English translation by A.H. Armstrong, New York, A Pergamon Press Book The Macmillan Co. 1964
  • [20] Krasnosel'skii M. A., Lifshits E. A. and Sobolev A.V.: Positive Linear Systems The Method of Positive Operators. Moscow, Nauka, 1985 (in Russian). English translation by Jiirgen Appell, Berlin, Heldermann Verlag 1989
  • [21] Kudrewicz J.: Stability of nonlinear systems with feedback. Automatics and Re mote Control, 25 (1964), pp. 1027-1037, translated from Avtomatika i Telemekhanika, 25 (1964). pp. 1145-1155
  • [22] Kudrewicz J.: Frequency-domain methods in the theory of nonlinear dynamical systems. Warszawa, WNT 1970 (in Polish)
  • [23] Logemann H., Curtain R. F.: Absolute stability results for well-posed infinite-dimensional systems with low-gain integral control. ESAIM: Control, Optimisation and Calculus of Variations, 5 (2000), pp. 395-424
  • [24] Łojasiewicz S.: An Introduction to the Theory of Real Functions. Warsaw, PWN (in Polish) 1973 (First edition), English translation of the second Polish edition (1976), by G. H. Lawden, Chichester, Wiley-Interscience Publication 1988
  • [25] Meehan M., O'Regan D.: Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals. Nonlinear Analysis Ser. A: Theory, Methods and Applications, 35 (1999), pp. 355-387
  • [26] Natanson I. P.: Theory of Functions of Real Variable. Second edition, Moscow, Gostekhizdat 1957. German translation edited by Karl Boegel, Berlin, Akademie-Verlag 1981
  • [27] Pazy A.: Semigroups of Linear Operators and Applications to PDEs. Berlin, Springer 1983
  • [28] Pruss J.: On the spectrum of Co-semigroup. Transactions of the AMS, 284 (1984), pp. 847-857
  • [29] Sandberg I. W.: On the L2-boundedness of solutions of nonlinear functional equations. Bell System Technical Journal, 43 (1964), pp. 1581-1599
  • [30]Sandberg I. W.: A frequency-domain condition for stability of feedback systems containing a single time-varying nonlinear element. Bell System Technical Journal, 43 (1964), pp. 1601-1608
  • [31] Sandberg I. W.: A note on the application of contraction-mapping fixed point theorem to a class of nonlinear functional equations. SIAM Review, 7 (1965), pp. 199-204 or I. W. Sandberg, An observation concerning the application of the contraction-mapping fixed-point theorem, and a result concerning the norm-boundedness of solutions of nonlinear functional equations. Bell System Technical Journal, 44 (1965), pp. 1809-1812
  • [32] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators. Mo scow: Gostekhizdat, 1956 (in Russian). Translated and supplemented by Amiel Feinstein, San Francisco-London-Amsterdam, Holden-Day Inc. 1964
  • [33] Zemanian A. H.: Distribution Theory and Transform Analysis. New York, McGraw-Hill 1965
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.