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SUMMARY

The paper deals with Virtual Distortion Method (VDM) in frequency domain. VDM method is addressed to pro-
blems, where steady state response can be the base of the dynamical analysis. The VDM methodology allows fast
modification of the original structures without need of modifications of their stiffness, damping and mass matrices.
The present work contains the methodology of the new approach, some numerical results of computations and
optimization problem. Finally the analysis of sensibility is formulated.
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PRZEMODELOWYWANIE UKEADOW DRGAJACYCH ZA POMOCA METODY DYSTORSJI WIRTUALNYCH
W DZIEDZINIE CZESTOTLIWOSCI

Niniejszy artykul zajmuje sie Metodq Dystorsji Wirtualnych (MDW) w dziedzinie czestotliwosci. MDW odnosi sie
do problemow dynamicznych, w ktorych odpowiedz jest ustalona w czasie. MDW pozwala na szybkq modyfikacje
konstrukcji bez koniecznosci modyfikacji calej macierzy sztywnosci, tlumienia czy masy. Praca zawiera sformufo-
wanie nowego podejscia, wyniki obliczen numerycznych, a takze sformutowanie problemu optymalizacji i wrazli-

wosci konstrukcji dla nowego podejscia.

1. INTRODUCTION

Numerical analysis of dynamically loaded mechanical sys-
tems is a classical problem and plenty of software packages
is available on the market. However, the design process of
dynamically responding structures involves a time consu-
ming procedure of system improving, leading to desired fi-
nal response. Therefore, there is a need for numerical tools
helpful in automatic redesign process of these structures.
So-called Virtual Distortion Method (VDM) appears to be
promising approach and has been applied in remodelling
process of structures exposed to impact loads [3], where
time-domain-based transient analysis of dynamical respon-
se has been used. Analogous apparatus has been success-
fully used to solve the inverse dynamic problem of damage
identification via analysis of modification of elastic wave
propagation trough a healthy and damaged structural
element [2]. The VDM methodology (restricted to linear
responses and using pre-computed so-called influence ma-
trices) allows fast modification of the original structures
without need of modifications of their stiffness, damping
and mass matrices. Also, VDM allows numerically effecti-
ve analytical gradient computation, what is crucial for effi-
cient optimization process leading to solution of optimal
design or identification problem. The optimization process
leading to solution of optimal design or identification pro-
blem. The drawback of this mentioned time-domain-based
VDM approach is computational cost due to necessity of
analysis of the process evolution in time.

There is a class of problem where concept similar to the
mentioned above VDM approach, but based on frequen-
cy-domain rather than time-domain response can be ap-
plied. This numerically economic method can be addressed

to problems, where steady state response can be the base of
the dynamical analysis. For instance, the following tasks
can be solved on the base of the VDM-F (Virtual Distortion
Method in Frequency Domain) method:

— remodeling of vibrating system with harmonic excita-
tion in order to reduce vibrations in a selected area,

— identification of material/structural properties on the
base of monitored structural responses for samples of
harmonic excitations,

— detection and identification of damages (via inverse dy-
namic problem) on the base of monitored structural
responses for samples of harmonic excitations.

The first mentioned above field of applications corre-
sponds also to vibro-acoustic problems, with relatively high
frequencies of excitations. Classical FEM- based numerical
tools are too expensive in this case and so-called SEA (Sta-
tistical Energy Analysis) [1] approach with its drawbacks
due to lack of accuracy has been proposed. There is a need
for a combined (FEM-SEA) methodology able to propose
compromised techniques. The authors hope that the discus-
sed below VDM-F approach will develop to one of such
propositions.

2. PROBLEM FORMULATION

In order to present basic formulas of the VDM-F method, let
us focus on quick remodelling of truss structures under
harmonic excitations. The structure is described with some
parameters in which modifications could be introduced.
After modifications the structural response i.e. displace-
ments and internal forces are recalculated and then influen-
ce of the modifications is examined.
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The general form of equations of motion for a multi-de-
gree of freedom system is as follows

M -ii(t) + C-1i(t) + K -u(t) = £ (£) (1)

where M, C and K are mass, damping and stiffness matri-
ces, respectively and f(¢) is the vector of external forces.

Each of the above mentioned matrices represents a set of
parameters which can be modified in a form

M+AM)-ii(t) +(C+AC)-u(t) +

@)
+(K+AK)-u(t) = f(t)

where AM, AC, AK represent changes to the mass, damping
and stiffness matrices, respectively. As a specific case we
may choose to modify only the stiffness and mass of struc-
tural components.

A useful tool for predicting the response of a structure,
given changes of some of its parameters (stiffness, Young
modulus, mass, cross section) is the Virtual Distortion
Method.

In this paper the methodology and example based on the
new approach-Virtual Distortion Method in frequency do-
main is developed.

The task is to demonstrate that the VDM-F based simula-
tion of structural modifications leads to the same results as
re-computed dynamic response for the modified structure.
We will calculate the influence of changes in stiffness and
mass on the response of a structure when the structure
is excited with a harmonic force. Then, the problem is recal-
culated for few harmonic frequencies of excitation. A case
without damping is considered in this work. It is also assu-
med that all components are truss elements. First only stift-
ness modification in elements was examined, then only
mass modification, and in the end mass and stiffness modi-
fications were coupled together.

Finally an optimisation problem is formulated as an
example of practical application.

3. VIRTUAL DISTORTION METHOD
IN FREQUENCY DOMAIN

If the investigated structure is subjected to a harmonic exci-
tation

f(©)= fsin(o-1) 3

then its response will be composed of two components: free
vibrations resulting from the initiation of the external exci-
tation—these vibrations will be damped out and steady state
vibrations due to excitation itself. This work is focused on
the case when the structure is in the steady state, neglecting
damping effect for simplicity of the discussion. All ele-
ments vibrate with the same phase because there is no dam-
ping considered. Therefore the excitation (3) leads to the
following dynamic response expressed by displacement

u(t) =usin(-t) (4)

Changes in stiffness and mass distribution were model-
led by virtual distortions denoting initial strains in structu-
ral elements and virtual forces in structural nods oscillating
with the same frequency as external excitation:

gl = €% sin (w-1)
(5)
P =p"sin(o-1)

where the first quantity models stiffness, while the second
one the mass distributions respectively.

Let us call “modified structure” — structure in which
changes were made to the mass and stiffness matrix and
“modelled structure” — structure in which changes were
made by virtual distortion, without changing mass and stiff-
ness matrices.

It is assumed in order to build VDM equations that struc-
ture modelled by virtual distortions is identical with the
modified structure.

Equations of motion for modified and modelled structu-
res can be obtained introducing in egs. (1) and (2) compo-
nents due to virtual distortions (5) (cf. [3])

Mii(t) +GTSGu(r) = £(r) (6)
Mii(r) + GTS[Gu(t) —&? (t)] =£(0)+p° (1) %)
where:
K =GTSsgG,

S — diagonal matrix with elements S; =E;A;/[;
composed of the Young modulus E, element
cross section 4 and length of element /,

¢ =Gu,

G — denotes the displacement-strain transfer matrix.

If the harmonic excitation is investigated the equations
above take the following form (substituting eqs. (3) and (4)
to eqgs. (6) and (7)):

—o’Mu+GTSGu =f (8)
—o*Mu +GTS[Gu —s"] —f4p° 9)
In the above equations we got rid of the time dependent
members. The displacement depends only on the frequency

and the amplitude of external excitation and can be decom-
posed in the following form (cf. [3])

u; =u} +D5 ) + DO p! (10)
where: |
Dl!]’.’ — influence matrix denoting amplitude of displa-
cement ; in node “1” generated by unit, harmo-
nic force p0 = 1, with frequency ® applied
,  Innodej”,
Diek — influence matrix denoting amplitude of displa-

[73¢1)
1

cement #;in node “i” generated by unit, harmo-
nic strain distortion, with frequency ® applied
in element “k”.
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In the formulas below indices i, j, k run through all struc-
tural nodes while indices I, m, n through structural ele-
ments.

It is postulated that response of the structure modelled by
virtual distortions has to be identical with the response of
the modified structure. Therefore, for each element which is
modified the compliance of strains and forces in modeled
system is required (cf. egs. (8) and (9))

E,A E,A
e, =—""(e, €, (11)
In In
and modification parameter [, can be defined:
A _ 0
w, = En = (12)
Aﬂ 8”
where
€, =G, U (13)
Finally, it follows from (10), (12) and (13)
A (oL e’ 0 P’ 0
Ay | & +GyiDjy € +GniDij pPj |=
(14)

0 0
=An(e],; +G,D5 €Y +G,.DP pg-eg)

i ni=iyj

It follows also from eqs. (8) and (9) the requirement of
second identity:

0 2
Di =_AMij(‘0 uj

(15)
AMij :Mij _Mij =

R (16)
:p(An _An)'ln =pA, (Hn _1)'ln

and p denotes the material density, while I, the length of
element “k”.
Finally it leads to

0 2( L 0 0
(17)
L 0 0
=—0’pA, (1, —1)-1, (uj +D§neg +D;}C p,?)

From equations (14) and (17) can be written in the follo-
wing form (neglecting subscripts)

(1-p)GD® —1 (1-p)GDP'

opA(1-p)-LD®  o2pA(I-p)-LDP —1

)

B —(I-p)Gu®
- —cosz(I —p)-Lut

(18)

and allows determination of the virtual quantities pS, and
82 modelling modifications of mass and stiffness matrices
in the VDM-F procedure. The matrices L, p, A, L above are
diagonal.

4. RESULTS OF NUMERICAL COMPUTATIONS

4.1. Input data for calculations

Dimensions: 1 m x 1 m

Applied force F = 1500sin (o*t) [N]

Young modulus E = 2.1-10" [Pa]

Cross section S =107 [mz]

Density p = 7800 [kg/m’]

Element number 4 — modified element

Cross section of element number 4 was decreased by
60%, u= 0.4 (Fig. 1).
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Fig. 1. Truss structure testing example

4.2. Eigenvalues

Consistent mass matrix was used to obtain results shown in
this paper, but also eigenvalue problem with diagonal mass
matrix was calculated for comparison. The own frequencies
(Tab. 1) were extracted in order to choose the frequencies of
excitations taken into considerations.

Table 1. Own frequencies

No.| Lumped mass matrix [Hz] | Consistent mass matrix [Hz]
1 310.40 359.1

2 704.16 813.1

3 765.26 1003

4 992.53 1303

4.3. Results for mass and stiffness modification
— coupled task

The results of the VDM in frequency domain are shown
together with results of steady state task without modifica-
tion. Each table (Tabs. 2—-5) contains maximum amplitude
of displacement for all free degrees of freedom for different
values of frequencies.
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Table 2. Amplitude in 3 degree of freedom

Omega
[Hz]

Modification

[m]

Without modification

[m]

100

0.448132653433E-03

0.316658444804E-03

200

0.451801277185E-03

0.318990714282E-03

400

0.466973257941E-03

0.328614166077E-03

600

0.494162526586E-03

0.345777851879E-03

Table 3. Amplitude in 4 degree of freedom

Omega
[Hz]

Modification

[m]

Without modification

[m]

100

0.171515434489E-02

0.121199507871E-02

200

0.172771669693E-02

0.121998847244E-02

400

0.177962017337E-02

0.125294281888E-02

600

0.187244676267E-02

0.131161211922E-02

Table 4. Amplitude in 7 degree of freedom

Omega
[Hz]

Modification

[m]

Without modification

[m]

100

-0.268035201545E-03

-0.399213378993E-03

200

-0.270064619952E-03

-0.401677670771E-03

400

-0.278486270140E-03

-0.411832598458E-03

600

-0.293696902105E-03

-0.429894288987E-03

Table 5. Amplitude in 8 degree of freedom

4.4. Comparison of results with FEM in time domain

Comparison of results obtained trough the VDM-F simula-
tion versus the direct, FEM based re-computing done for the
modified structure (transient analysis) is presented (Tab. 6
and 7). Calculations were made for the force vibrating with
frequency ® = 200 Hz.

4.5. Comparison with steady state task

Table 8 contains results obtained from steady-state FEM
re-analysis task and from VDM-F simulation in frequency
domain. For the first case mass and stiffness matrices were
modified, for second one changes were modeled by virtual
distortions.

5. OPTIMIZATION PROBLEM
AND ANALYSIS OF SENSIBILITY

Optimization aims at finding the minimum of target func-
tion F dependent on chosen variables called decision varia-
bles A. Decision variables could be for instance mass, stiff-
ness or cross-section area of structural elements.

In order to demonstrative applicability of VDM-F let us
search for such material redistribution, determined by modifi-
cations of elements’ cross sections |, that the strain amplitu-
de of the selected element number 4 (Fig. 1) will be minimized

min (/) =min (e, (19)
In this case decision variable was modification parame-
ter L. The objective function (19) together with precompu-

0 0
ted response uL, the influence matrices D , D% and rela-
tions (12), (16), (18) determine the optimization problem

Omega Modification Without modification . .
[Hz] [m] [m] subjected to the control parameters ;. Computational cost of
gradient-based optimization technique depends mostly on
100 021622552893 7E-02 0.152793746969E-02 the efficiency of sensitivity analysis. In this case gradients can
200 0.217536095149E-02 0.153609610228E-02 be delivered efficiently trough the following analytical way
400 0.222946643429E-02 0.156971343777E-02 i o de, . ang de, . apio .
600 0.232606580750E-02 0.162949501527E-02 dy, aSmO oL apiO Iy
Table 6. Comparison of calculations using FEM and VDM/F

D.OF. 3 4 7 8

Structure without modifications FEM 3.19E-04 1.22E-03 4.02E-04 1.54E-03

Structure without modifications VDM 3.19E-04 1.22E-03 4.02E-04 1.54E-03

Modified structure VDM 4.52E-04 1.73E-03 | -2.70E-04 | 2.18E-03

Modified structure FEM 4.52E-04 1.73E-03 2.70E-04 2.18E-03

Table 7. Differences in percentage

D.OF. 3 4 7 8

FEMno_mod/VDMno_mod 0.03% 0.00% 0.03% 0.06%

FEMno_mod/VDMmod -41.59% -41.62% 32.79% -41.53%

VDMno_mod/VDMmod -41.63% -41.62% 32.77% -41.62%

FEMmod/VDMmod 0.04% -0.10% -0.02% 0.08%

no mod — calculation for structure without modifications
mod — calculation for structure with modifications
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Table 8. Comparison of amplitude for ® = 200 Hz

D.O.F. Modeled structure [m] Modified structure [m] Change
3 -0.451801277185E-03 -0.452014078403E-03 0.05%
4 -0.172771669693E-02 -0.172853022640E-02 0.05%
7 0.270064619952E-03 0.269855043579E-03 0.08%
8 -0.217536095149E-02 -0.217638524128E-02 0.05%

Five particular components of the above formula can be
determined via differentiation of the equations (10), (13)
and (18).

Substituting (10) to (13) we can get strain

0 0
e, =G4,.(u,.L +D! pgwg,,a?,,) @1
with derivatives
884 0
— 5 =G4iDim (22)
og,,
and
884 p
—0 = G4]D]l (23)
Pi

Differentiating equations (18) we can get the following
formulas

(1-p)GD® —1 (1-p)GDP’

.|
o’pA(I-p) LD®  o2pA(I-p)- LD’ -1

95 . . (24)
o Gu" +GD* ¢ +GDP p°
M —0’pAL (uL +D*' g +Dp0p0)
o
Concluding, determination of gradient a—f requires so-
/Ty e’

lution of the set of equations (24) with respect to 8_m and
0 )
gﬂ and then substitution of the obtained results (together
My
with components (22), (23)) to the formula (20).
The iterative technique based on the following steepest
descent rule of modifications of control parameters pi; can
be proposed

! af
g (25)
by =y —as l

where M‘l denotes the modified material distribution in the
next step of iteration and o <0,1>.

It is important from computational point of view that
main matrices on the left hand side in equations (18) and
(24) describing VDM-F modeling and sensitivity are identi-
cal, what reduces significantly numerical cost.

6. SUMMARY AND CONCLUSIONS

Virtual Distortion Method in frequency domain (VDM-F) is
a useful tool to investigate dynamic problems. Static-like
influence matrices was build, only once for each value of
frequency. Based on VDM/F the optimization process in
frequency domain is expected to be significantly faster
compared to the one analyzed in time domain. Time domain
tasks were much more time consuming because it was re-
quired to calculate influence matrices for all steps in the
time period therefore VDM/F should mainly reduce compu-
tational time.

In structure modeled by virtual distortions in frequency
domain and modified structure in steady state task differen-
ces between results do not exceed 0.05%. Hence the VDM
in frequency domain seems to be an effective method to
calculate vibrating structures loaded with harmonic excita-
tions. It is possible to develop algorithms to design and
control vibrating structures basing on VDM in frequency
domain. Comparison of the maximum displacement for the
case with element 4 cross section changed by 60% and the
maximum displacement for structures without modifica-
tions shows that the differences are about 42% for 3, 4 and
8 D.O.F. and about 33% for 7 D.O. F. Almost the same re-
sults were obtained from VDM/F, steady-state task and
from FEM. Differences between do not exceed 0.1%.

New approach can be applicable for remodelling structu-
res subjected to harmonic excitations. The optimization
problem can be considered, to find the optimum of the mass
distribution in order to isolate or protect a part of the struc-
ture from undesirable vibrations. Another application is to
formulate inverse problem for identification of unknown
structural characteristics.
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