AUTOMATYKA ¢ 2010 « Tom 14 « Zeszyt 3/1

Stawomir Jezewski*, Maciej Laski*, Robert Nowotniak*

Comparison of Algorithms
for Simultaneous Localization
and Mapping Problem for Mobile Robot

1. Introduction

Robotics is an engineering science and technology of robots considered broadly in
many scientific papers nowadays. Scientific progress makes them more robust, functional
and intelligent all the time. Recent years have witnessed successful applications of robots in
medicine [1, 22] and industry [9, 16]. Moreover, robots can be used by people with disabil-
ities or in environments dangerous for human health and life [20, 24].

This paper presents a comparison of selected algorithms for simultaneous localization
and mapping (SLAM) problem [19, 21] in mobile robotics [13]. Results of four general
metaheuristics, Simple Genetic Algorithm, Particle Swarm Optimization, Quantum-In-
spired Genetic Algorithms and Genetic Algorithm with Quantum Probability Representa-
tion, have been compared with results of analytic, classical method in this field, Iterative
Closest Points algorithm. In the experiments the same objective function, drawn from Itera-
tive Closest Points algorithm, has been used. Two situations have been considered: local
and global localization problems of mobile robots. Both problems are import and often crit-
ical for successful navigation of robots.

The simultaneous localization and mapping problem is critical for efficient navigation
and localization of autonomous robots. In a classical approach, SLAM uses different types
of sensors (e.g. sonar, infra red, lasers, laser scanners, cameras) to locate the robot in its
knowledge base, i.e. a map of environment. As the robot explores new areas, the knowledge
base is updated and the new localization is calculated in the updated map. One of the well-
tried methods addressing this problem is Iterative Closest Points algorithm [2]. Other possi-
ble approaches in this area include particle filters or geometry based localization [11, 23].

The motivation of our research was to investigate which algorithm performs best and
in which variant of different localization problems in different environments.
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This paper is organized as follows. In subsection, 1.1 the localization problem has been
described and essential definitions have been given. In subsection, 1.2 the classical method
in this field, Iterative Closest Points algorithm, has been outlined. Subsection 1.3 briefly
describes selected modern metaheuristics considered in this paper: Simple Genetic Algo-
rithm, Particle Swarm Optimization, Quantum-Inspired Genetic Algorithms and Genetic
Algorithm with Quantum Probability Representation. In section 2, parameters and condi-
tions of our experiments have been given and an empirical comparison has been performed.
Results of the experiment have been presented in section 3. Section 4 briefly concludes
results of this paper.

1.1. Problem statement

The problem of robot localization considered in this paper is based on matching the
scan from a laser rangefinder with points of the map. The map is created and updated simul-
taneously during the localization process. The data flow in this approach has been shown in
Figure 1.
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Fig. 1. Data flow in SLAM

A simple illustration of the localization problem has been presented in Figure 2. The
arrow in the centre of the picture represents the robot position and orientation. The dark
points represent the map of the environment; bright points represent a scan from the laser
sensor. The localization problem regards to finding the pose in the space where the scan
matches the map precisely.
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Let W = {(x, y,0):x, y€ R,ae [T, n]} denote a space of all possible mobile robot
poses, which include position (x, y) and orientation o.. Let O, € W denote a pose of robot in
the step k. Let us denote by S = {sy, 5, ..., ,} a scan, i.e. a set of points registered by robot

sensors and by M = {my, m,, ..., m;} a set of points that make up the map, where s; = (x;, y;)
and m; = (x;, y;), respectively.
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Fig. 2. Illustration of the localization problem

Moving in the environment, the mobile robot changes its pose in the W space. When
the robot is in pose Q,, the scan point s, is in position (x,, y,) in the local coordinate sys-
em, while in the consecutive pose e same scan point is denote e position
t hil th tive p e th point is denoted by the posit
(Xg41> Yisr)- In global coordinate system, points s, and s, , are equal. Assuming that the
translation (Ax, Ay) and rotation (Ao.) are known, we can express the transformation be-
tween Q, and Q, ., as shown on Figure 3, by:

X cos(Aa) —sin(Aa) || x; Ax

= + O
Y1) Lsin(Ao) - cos(Aa) | i | LAy

Exact knowledge about the transformation between Q, and Q, , is critical for the na-
vigation algorithms. Consequently, localization algorithms have to be accurate and robust.
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Fig. 3. Transformation between two consecutive poses O, and Oy, of a robot

1.2. Iterative Closest Points

Iterative Closest Points (ICP) algorithm was first presented in [2] and this section out-
lines the algorithm briefly. ICP is a classical, analytic method for solving the localization
problem. The objective of the algorithm is to find the value of (Ax, Ay, Aa) transformation
that identifies current robot pose on the map. ICP algorithm is widely used in mobile robo-
tics to solve the SLAM problem [17, 19, 21]. The algorithm is based on squared Euclidean
distances between the scan and map points. This distance function §:SxM > R between
scan and map points is expressed as:

35 m )= (x2 ="} + (3 5 @

where s; = (7, y;) and m; = (", y{")-
Consecutive steps of the algorithm are given as follows:

1) First, the initial values of Ax, Ay, Aa need to be selected. The values can be taken from
the previous execution of the algorithm, a priori knowledge can be used or the values
can be set to zero in the first run.

2) Next, each point s; of the scan S is transformed to obtain the scan S, as follows:

x'; cos(Aa)) —sin(Ao) || x; Ax
{y',- :| - { sin(Aa) cos(Aoc)] [y,-:|+[Ay] 3)

In the last iteration the scan S’ should fit to the map M precisely.
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3)

4)

5)

The minimum distance to the points of the map M is calculated for each point of the
scan S'. Let us denote by Fgijpy 1S "+ M the closest point on the map M for the given
scan point s' € S'i.e.:
Fgi (") =argmin §(s’, m) 4)
meM

Then, the error value E is calculated as the sum of all minimum distances between S’
and M for each s}:

57
E=Y8(s}, F(s))) 5)
i=l1
When the value of the error function between current and previous iteration is smaller
than a specified threshold, the algorithm is finished.
Finally, the new values of Ax, Ay, Ao, which minimize the error value E, are calculated
as given in (6)—(8). Then, the next iteration is started at the second point.

N

A =3 ((F (7)), —cos (A0)- (5;) +sin (Aa)-(s;), ) (6)
i=1
N

Ay = 2((F (s7 ))y —cos (Aa)-(s;), —sin(Aoc)-(sl«)x) (7)
i=1

N , ,

2((Si)y “Ax=(s;)y - Ay = (F (s ))x “(5;)y +(F (sf ))y ‘(Si)x)

A0 = arctg ‘;:‘1 ()
> (-G -Ax=(s1)y -y (F (57)), 60 +(F (), Gy )
i=1

1.3. Evolutionary computing methods

Evolutionary computing [4] is a branch of artificial intelligence that concerns optimi-

zation and search problems. In general, evolutionary techniques are metaheuristic optimiza-
tion methods. Main subfields in this area are evolutionary algorithms [7, 18] and swarm
intelligence methods [15]. Contrary to analytic or enumerative methods, in evolutionary
computing, the algorithms maintain a population of candidate solutions. The algorithms use
iterative process, such as growth and development of a population. Solutions in the popula-
tion are evaluated according to their fitness. Knowledge extracted from the solutions, that
with high fit, is exploited in subsequent iterations of the algorithm to explore the promising
regions of the search space. Various random factors present in this approach allow the algo-
rithms to perform very well in highly multimodal, nonlinear optimization problems.
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From a wide range of evolutionary computing techniques, the following algorithms

have been considered in this paper:

1)

2)

3)

4)

Simple Genetic Algorithm (SGA) — a classical evolutionary algorithm which mimics
the process of natural evolution [10]. In Simple Genetic Algorithm solutions are repre-
sented as binary chromosomes and two genetic operators are applied: crossover and
mutation. The algorithm is based on concepts drawn from biological evolution: adapta-
tion, feature inheritance, selection pressure and survival of individuals that fit best in
the environment.

Particle Swarm Optimization (PSO) — a method located in the subfield of swarm
intelligence [6, 15]. In the used algorithm, a swarm of particles move in the search
space. The algorithm draws its inspiration from collective behaviour of decentralized
systems such as birds flocking, fish schooling or animals herding. This method is par-
ticularly suitable for numerical optimization problems as solutions, i.e. positions of
particles, are encoded in real numbers.

Quantum-Inspired Genetic Algorithm (QIGA) — an evolutionary algorithm, propo-
sed in [8], that draws inspiration from both: biological evolution and unitary evolution
of quantum systems. The algorithm is based on concepts and principles of quantum
mechanics such as qubits or superposition of states. Genes in the algorithm are model-
led upon qubits, two-level quantum systems, which brings additional element of ran-
domness and a “new dimension” into the algorithm. Genetic operators are based on
quantum rotation gates that modify probability distributions of sampling the search
space, encoded in quantum genes.

Genetic Algorithm with Quantum Probability Representation (GAQPR) — a relati-
vely novel algorithm, proposed in [3]. This algorithm is an extension to Quantum-
Inspired Genetic Algorithm. To prevent premature convergence of the evolutionary
process an additional genetic operator is employed, exchanging information between
quantum chromosomes.

Simple Genetic Algorithm and Particle Swarm Optimization are classical techniques

in this field, while Quantum-Inspired Genetic Algorithm and Genetic Algorithm with
Quantum Probability Representation are considered to be state-of-the-art methods in
this area. Each of these methods has been successfully applied in variety of problems, ex.
[3, 4, 15].

2. Empirical comparison of the algorithms

In our research, performance of ICP algorithm has been compared with four metaheu-

ristics presented in the previous subsection. This section describes how the study was done.

)

The experiments have been conducted on two maps:

Localization on artificial map — one of the environments provided by Microsoft Ro-
botics Developer Studio has been used. The map reflects the virtual urban environ-
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2)

ment. Nvidia PhysX engine has been used which allows collecting data that is similar
to real signals [19]. The size of this artificial map is approximately 70x60 meters and
the map has been presented in Figure 4. In the experiment, the correct pose of robot
was located at Q" = (18.06, — 0.84, 2.21).

Localization on real map — the map has been created for the Computer Engineering
Department building. The real map has been generated by six-wheeled mobile robot
platform which is being developed at the Technical University of Lodz in grant foun-
ded by The Ministry of Science and Higher Education. The robot is equipped with
laser rangefinder that is able to scan environment in 270° horizontally with the resolu-
tion of 0.25°. The maximum visibility range of the laser rangefinder is 30 meters. The
size of the map is approximately 20x20 meters. The map has been presented in Figu-
re 5. Much more irregularities and noise from the laser scanner are visible in compari-
son to the artificial map. In the experiment, the correct pose of the robot was located at

0" =(2.89, -0.62, 0.75).

Map of simulated environment.
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| +  Map point |

Fig. 4. Map generated from simulated data
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1)

2)

Map of a real building.

10

| «  Map point |

Fig. 5. Map of real building

For each map, two variants of the localization problem have been considered:

Local localization problem — assuming that previous localization and maximum spe-

ed of the robot is known, the feasible region in the search space can be reduced greatly.

We have assumed that the maximum translation between consecutive poses is £30 cm

in each direction and maximum rotation is £30°. In this case:

— The search space is highly reduced.

— Usually, only one optimum in the feasible region exists, i.e. it is a uni-modal optimiza-
tion problem.

Global localization problem — this situation occurs when the robot is turned on at an

unknown location of the map. The objective is to find the robot’s pose on the whole

map. Size of the map is at least several dozen meters. Consequently, in this case:

— Usually, plenty of local optimums exist in the search space (multi-modal problem).
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Therefore:
— Greedy or deterministic algorithms can prematurely converge to local optimums,
corresponding to wrong locations on the map, easily.

In each variant of the experiment, the same population size, 30 individuals, has been
used. The fitness function has been based directly on the error value (5) used in Iterative
Closest Points algorithm. The objective of the algorithms was to minimize the error value,
i.e. find the pose Q* € W such that Q* =argmin gy S 9, where S7 denotes the scan in the
pose g. Neither scaling nor any other modification of the fitness value has been applied.
Other parameters of the algorithms were set to highly typical values given in literature,
namely:

1) Simple Genetic Algorithm — fitness-proportionate (roulette wheel) selection method
has been used with no elitism. Two genetic operators applied were: one-point crosso-
ver with probability P, = 0.9 and uniform mutation with probability P,, = 0.001, which
results in mutation of one gene in population per generation on average. The chromo-
somes length was set to 30 genes.

2) Particle Swarm Optimization — learning factors were set to ¢; = 2, ¢, = 2, maximum
velocity was set to about 1 meter/generation in the global problem and about 1 centi-
metre/generation in the local problem. In the beginning of the algorithm particles were
scattered in the feasible region of the search space randomly.

3) Quantum-Inspired Genetic Algorithm (QIGA) — parameters given originally in [8§]
have been used. The crucial parameters of this algorithm are rotation angles given in
so-called lookup Table. The rotation angles were also taken directly from [8]. Despite
the fact the genetic operators in these algorithms were originally adapted for another
type of problem, combinatorial optimization, the algorithm performs also very well on
numerical optimization. The lookup table is the only special parameter for the QIGA
algorithm, apart from the number of chromosomes and their length. The chromosomes
length was set to 30 genes. Initial population consisted of quantum chromosomes that
sample each point of the search space with equal probability.

4) Genetic Algorithm with Quantum Probability Representation (GAQPR) — the parame-
ters that are in common with QIGA were set to the same values. Additional genetic
operator, exchanging information between quantum individuals, presented in [3] has
been applied with the probability P.= 0.7.

The termination criterion in each case was simply the maximum number of generation, 130.

3. Results

Figures 6-9 in following subsections present results of the experiments. The plots
present fitness of the best solutions in populations per generation number. The plots have
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been created for an average over 10 runs of the algorithms. Single iteration of Iterative
Closest Points has been considered as a generation for comparison with evolutionary
algorithms. However, it needs to be taken into account that in single iteration of Iterative
Closest Points the objective function is evaluated only once. On the contrary, in evolutionary
algorithms, the number of evaluations equals to the number of individuals in the popula-
tions. Since fitness evaluation is a dominant operation, it has a significant impact on real
execution time of the algorithms.

3.1. Local localization problem

In Figures 6 and 7 results for the local problem on artificial and real map, respectively,
have been presented. Not surprisingly, Iterative Closest Points algorithm performed abso-
lutely best for the local problem. Moreover, number of fitness measure evaluations in ICP is
30 times lower in comparison to other methods. Therefore, ICP is completely incomparable
with heuristic methods in local optimization. Out of the evolutionary algorithms, PSO per-
formed best for both, artificial and real map. The reason of this result can be discerned the in
representation of solutions. PSO is the only algorithm with solutions coded in real numbers,
out of the considered methods.

70

fithess

i i
0 20 40 60 80 100 120
generation

Fig. 6. Comparison for local problem on artificial map. Fitness/generation number
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Fig. 7. Comparison for local problem on real map. Fitness/generation number
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Fig. 8. Comparison for global localization problem on artificial map. Fitness/generation number
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3.2. Global localization problem

In the global problem, ICP is the worst algorithm out of the considered group. This
deterministic algorithm is suited for local localization problem. Therefore, in this case it
gets trapped in local optimums, easily. The best algorithms were, respectively: QIGA,
GAQPR, PSO. Surprisingly, the quantum-inspired genetic algorithms, QIGA and GAQPR,
were the best methods in this case, despite the fact that they use binary coding and originally
they were invented for another type of problem, the combinatorial optimization. Moreover,
in 60 generations, they outperformed the PSO algorithms which suits perfectly for problems
encoded in real numbers perfectly.
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Fig. 9. Comparison for global localization problem on real map.
Fitness/generation number

In Figure 9, results for the real map have been presented. In 130 generations GAQPR
algorithm performed best. However, it is easy to see that performance of PSO was also very
good. Moreover, PSO performed extremely well in the first 20 generations of the algorithm,
achieving the best convergence rate. Results of ICP algorithms, which performed terrible
during the experiment on the real map, have been excluded from Figure 4 to keep reada-
bility of the Figure.
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4. Conclusions

In this paper a comparison of selected evolutionary techniques for the simultaneous
localization and mapping problem has been presented. The techniques were Simple Genetic
Algorithm, Particle Swarm Optimization, Quantum-Inspired Genetic Algorithms and Ge-
netic Algorithm with Quantum Probability Representation, for the simultaneous localiza-
tion and mapping problem has been presented. The results have been compared with Itera-
tive Closest Points algorithm. Local and global localization problems have been considered.
Numerical experiments have been conducted for artificial environment and real map gene-
rated by laser rangefinder.

In the local problem, ICP is definitely the best algorithm, out of the compared methods.
However, it does not work for the global problem. Best results for the global problem have
been achieved by quantum-inspired genetic algorithms and PSO algorithm. PSO performs
definitely best in the first dozens of generations. This was visible particularly in experi-
ments performed on the real map with irregularities. Promising approach for further re-
search is hybridization of the algorithms for global localization problem, i.e. development
of a method consisting of two stages: rough selection of the feasible region by evolutionary
technique followed by efficient and precise localization by Iterative Closest Points algo-
rithm.

Other possibilities of further research include: analysis of the influence of parameters
on the performance of the algorithms, implementation of the best methods in the real mobile
robot and comparison of the algorithms for localization in three-dimensional space. Also,
a comparison with respect to real time execution of the optimized algorithms execution is an
interesting approach for further research.

Acknowledgement

Co-author Maciej Laski is participating in the programme: “Innowacyjna dydaktyka
bez ograniczen — zintegrowany rozwdj Politechniki Lodzkiej — zarzqdzanie uczelniq, no-
woczesna oferta edukacyjna i wzmacnianie zdolnosci do zatrudniania, takze o0sob
niepetnosprawnych’.

References

[1] Abolmaesumi P., Salcudean S.E., Zhu W.H., Image-Guided Control of a Robot for Medical Ultra-
sound. 1IEEE Transactions on Robotics and Automation, 18(1), 2002, 11-23.

[2] Besl P.J., McKay N.D., 4 Method for Registration of 3-D Shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1992, 239-256.

[3] Bin L., Junan Y., Zhenquan Z., GAQPR and its application in discovering frequent structures in
time series. Neural Networks and Signal Processing, 2003.

[4] De Jong K.A., Evolutionary computation: a unified approach. MIT Press, Cambridge, MA, 2006.

[5] Dung-Ying L., Waller S.T., A quantum-inspired genetic algorithm for dynamic continuous
network design problem. The International Journal of Transportation Research, vol. 1, Issue 1,
January 2009.



452

Stawomir Jezewski, Maciej Laski, Robert Nowotniak

(6]

(7]
(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]
(20]

(21]
(22]

(23]

(24]

Eberhart R., Kennedy J., 4 new optimizer using particle swarm theory. Micro Machine and Hu-
man Science, 1995. MHS’95., Proc. of the Sixth International Symposium on, Anonymous, 1995,
39-43.

Goldberg D.E., Genetic algorithms in search, optimization and machine learning. Addison
Wesley, 1989.

Han K., Kim J., Genetic Quantum Algorithm and its Application to Combinatorial Optimization
Problem Proc. of the 2000 Congress on Evolutionary Computation, Anonymous, IEEE Service
Center, Piscataway, NJ, 2000, 1354-1360.

Hirschfeld R.A., Aghazadeh F., Chapleski R.C., Survey of Robot Safety in Industry. International
Journal of Human Factors in Manufacturing, 3(4), 2007, 369-379.

Holland J.H., Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, 1975.

Howard A., Multi-robot Simultaneous Localization and Mapping using Particle Filters. In Robo-
tics: Science and Systems, 2005.

Jezewski S., Laski M., Przeglqd i porownanie Srodowisk symulacji robotow mobilnych. ISSN:
1429-3447, 2009.

Jezewski S., Sankowski D., Dadan W., Koncepcja autonomicznego robota pola walki przeznaczo-
nego do zadan zwiadu i wykrywania min. ISSN: 1429-3447, 2009.

Jopek L., Nowotniak R., Postolski M., Babout L., Janaszewski M., Zastosowanie kwantowych
algorytmow genetycznych do selekcji cech. Automatyka (potrocznik AGH), t. 13, z. 3, 2009,
1219-1232.

Kennedy J., Eberhart R., Particle swarm optimization. 1995.

Lopes A., Almeida F., 4 Force-Impedance Controlled Industrial Robot using an Active Robotic
Auxiliary Device. Robotics and Computer-Integrated Manufacturing, 24(3), 2008, 299-309.
Martinez J.L., Gonzalez J., Morales J., Mandow A., Garcia-Cerezo A.J., Mobile Robot Motion
Estimation by 2D Scan Matching with Genetic and Iterative Closest Point Algorithms. Wiley In-
terScience, Journal of Field Robotics 23(1), 2006, 21-34.

Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag,
1999.

Nuchter A., The Simultaneous Localization and Mapping Problem with Six Degrees of Freedom.
ISSN 1610-7438, 2009.

Speich J.E., Rosen J., Medical Robotics. Encyclopedia of Biomaterials and Biomedical Engi-
neering, 2004, 983-993.

Stachniss C., Robotic Mapping and Exploration. ISSN 1610-7438, 2009.

Stan S.D., Balan R., Maties V., Kinematics and Fuzzy Control of ISOGLIDE3 Medical Parallel
Robot. Mechanika, 75, 2009, 62-66.

Wang C., Thorpe C., Simultaneous Localization and Mapping with Detection and Tracking
of Moving Objects. Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2003,
842-849.

Zhuang, F., Zupan C., Chao Z., Yanzheng Z., A cable-tunnel inspecting robot for dangerous envi-
ronment. International Journal of Advanced Robotic Systems, vol. 5, No. 3, ISSN 1729-8806,
2008, 243-248.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


