
����������	
	��
�	
	���	
�	
	������	��


� ��������	�� !����!� 	"��#������$	��%&�!%#'	��!(���!��	�)	*�+�$	,�'#�+

�� "��#������	 �)	 �-����	 .�����	 #�+	���!)!%!#'	 /���''! ��%�$	 �&�	��''� �	 �)	 ��������	 .%!��%�	 !�

*�+�$	,�'#�+

��� ��!(���!��	,#�!�0���$	*/1�$	��./$	�./��$	2�!��	'�	1�#�+$	3�#�%�

��4

�!%&#5	,����'�6!�$	��$	���$	�#�%!�	7#�#���8�6!�$	��$

9�6#��	7���6�$	��$	*#�����	:#;����

��������	
��
�	�
��
������
������������������	���	����

�����	�
���	�
�

Modern medical computer tomography (CT) which uses multidetector spiral scanners
can produce three-dimensional volumetric images of very high quality and simply allows to
non-invasive look into inside of a human body. This is a very powerful and useful technique
being used in a variety of medical applications. 3D volumetric scans of human organs pro-
vide an excellent basis for quantification of anatomical structures, for example airway trees.
Automatic quantitative description of an airway tree extracted from volumetric CT data set
is useful information supporting the non-invasive diagnosis of bronchial tree pathologies,
especially chronic obstructive pulmonary disease (COPD) which is common name for
pathological changes characterized by airflow limitation due to different combinations of
airway diseases and asthma – one of the most widespread disease in the world. Computer
analysis of bronchial tree will allow a doctor to obtain precise data on the airway remo-
deling, which opens new possibilities such as: early identification of pathological changes,
precise treatment control, diagnosis of the airway remodeling reason, development of new
drugs, etc. The goal of such research is to build a system for automatic measurements of
diameter of an airway lumen and thickness of an airway wall. The system should be useful
in everyday clinical routine and due to application of modern effective image processing
and analysis algorithms it should provide results of high accuracy.

Quantitative analysis of the human airway trees is a challenge in image processing and
analysis. Results obtained in previous work on this subject are still not sufficient and they
need improvements [11]. Quantitative description of an airway tree consists in application
of several steps: segmentation of the tree, skeletonization, decomposition and anatomical
labelling, cross section generation and finally quantitative measurements. Each step needs



��< �!%&#5	,����'�6!$	�#�%!�	7#�#���8�6!$	9�6#��	7���6$	*#�����	:#;���

to use different kinds of image processing algorithms. The most works were performed on
different segmentation strategies [6, 9, 13], however skeletonization algorithms are still not
enough tested and they require attention.

Skeletonization of 3D volumetric images for instance bronchial tree after segmenta-
tion, consists in skeleton generation of the 3D object. A skeleton is a minimal representation
of the object geometry which preserves its topology. At present many different skeletoniza-
tion methods which can be categorized to many different groups were developed. However,
they produce skeletons with different characteristics and designed for different purposes.
Moreover, skeleton has very large impact on the quality of quantitative measurement of
a bronchial tree.

In the paper authors tested three skeletonization methods which are based on thinning
– the most popular skeletonization approach. However, each algorithm uses different thin-
ning strategy. Two of them based on cubical complex framework which was never used
before in such application. The paper presents basic concepts of the algorithms and discus-
sion about their primary features based on acquired results.

In the next chapter basic notions about volumetric images are presented. Sections 3
and 4 consist of skeleton definition and skeletonization algorithm descriptions. In section 5
test results on real CT images and discussion are presented. Summary and conclusions are
presented in section 6.

����������
	�
��

Basic concepts of a volumetric image and volumetric image processing were presented
in details elsewhere e.g. [7]. In this subsection only the notions necessary to understand the
following parts of the paper are introduced.

The elements of 3D image array are called voxels (points). Each voxel is described by
a quadruple (x, y, z, v) where (x, y, z) represents 3D location of the voxel and value v indi-
cates its membership. v = 0 means that a voxel belongs to a background, v = 1 indicating
that a voxel belongs to an object (in our case the entire of an airway tree). Background and
object points are also called white and black points respectively. Following definitions in
[7] we can distinguish different adjacency relations of voxels. In 3D space two voxels are
said to be 26-adjacent if they are distinct and each coordinate of one differs from the corre-
sponding coordinate of the other by at most 1; two voxels are 18-adjacent if they are
26-adjacent and differ in at most two of their coordinates; two voxels are 6-adjacent if they
are 26-adjacent and differ in at most one coordinate (see Fig. 1).

A voxel p is an n-neighbour of voxel q if p is n-adjacent to q for n = 6, 18, 26. Follow-
ing the same notations in [7], for a voxel p a voxel q is called an F-neighbour, E-neighbour,
or V-neighbour, of p if it shares a face, an edge or a vertex, respectively, with voxel p.



�"	.6�'����!�#�!��	�)	,�'���#��	�!�8#�	����	.���%����� ��=

We say a set S of voxels is n-connected if S cannot be partitioned into two subsets that are
not n-adjacent to each other. If p is a voxel in 3D space then N(p) denotes the set consisting
of p and its 26-neighbours.

 �!����	"!))�����	(�-�'�	#+>#%��%�	!�	�"	!�# ��?	#@	A0#+>#%���B

;@	
<0#+>#%���B	%@	�A0#+>#%���	C4D

Taking all above into consideration the 3D dimensional volumetric image P can be
described as a quadruple P = (V, m, n, B) where V = Z3, B ⊆ V and where (m, n) = (6, 26),
(26, 6), (6, 18), (18, 6). We denote by Z the set of integers, V and B denote set of all voxels
in the image and a finite set of black voxels respectively if P is finite. We say a set S of black
and/or white points in image P is connected if S cannot be partitioned into two subsets that
are not adjacent to each other. A component of a set of black and/or white points S is a non-
empty connected subset of S which is not adjacent to any other point in S.

If a black voxel has not a background voxel as a neighbour, it is considered as an inside
voxel otherwise it is called a boundary voxel. A background voxel is called an outside voxel
if all its neighbours are background voxels. A sequence of voxels p1, p2, ..., pn is called
a voxel path if it fulfils the following condition: pi is adjacent to pj if and only if |i – j| = 1,
for i, j = 1, 2, ..., n and i ≠ j. If pn = p1 then voxel path is closed path.

Tunnel in an object X is detected whenever there is a closed path in X which cannot be
transformed into a single point by a sequence of elementary local deformations inside X [7].
In 3D space the surrounded (by the object points) connected component of the background
is called a cavity.

#@ ;@

%@



��� �!%&#5	,����'�6!$	�#�%!�	7#�#���8�6!$	9�6#��	7���6$	*#�����	:#;���

���������	
��"�
����
������

Informally, a skeleton can be defined as a set of curves (centrelines) which passes
through the centre of an object interior. Some objects like human colon (see Fig. 2) have
only one centreline but there are complicated objects with many branches and holes like
human airway trees, blood vessels, cracks in materials and many others where a skeleton
can be a very complicated structure.

�������	�&�	&��#�	%�'��	8!�&	!��	�6�'����	�����!�����+	E�!� '�	%�����'!��@

The notion of a skeleton for any object O was introduced by Blum [3] who defined it as
a result of medial axis transformation. According to the definition an object voxel p belongs
to a skeleton if and only if there is a ball B(p)⊂ O centred at a voxel p such that there is not
any other ball B ⊂ O which includes B(p). The skeleton extraction and evaluation based on
Blum’s definition is very difficult. For instance, it is very difficult to preserve topology and
time consuming. Therefore many authors e.g. [10, 15] usually define a skeleton as a set of
curves which meets the following conditions:

F ��������	��
�F	#	�6�'����	����	;�	#	 ���	�)	%����%��+	(�-�'	�#�&�	#%%��+!� 	8!�&	 �&�

+�)!�!�!��	��������+	!�	�&�	���(!���	��%�!��G

F ���������
	F	#	�6�'����	�&��'+	%����	�&�	%�����	�)	#�	�;>�%�	!����!��G	3���	;���%&!#'	����

�6�'����!�#�!��	 ��!��	 �)	 (!�8	 �&!�	 �����'#��	 !�	 (���	 !�����#��$	 ;�%#���	 !�	  �#�#�����

�&#�	#	�6�'����	!�	#	+��%�!����	�)	#�	�;>�%�	%�����	#�+	%#�	;�	���+	��	#%%��#��'�	%#'%�'#��

%����	��%�!���	�)	#�	#!�8#�	����G

F 
���������
	F	#	�6�'����	�&��'+	;�	#	(�-�'	8!+�	�����&	%��(�	8!�&���	#��	��')0!����0

��%�!���	#�+	 )�'+�G	����	 )���#''�	 ���#6!� $	 #	 �6�'����	 �&��'+	;�	#	 ���	�)	 %����%��+

(�-�'	�#�&�G

F �������
� ������	���	 F	 �&���	 #��	 (#�!���	 +�)!�!�!���	 �)	 ����'� �	 ������(!� 	 �G G	 C4DG

�8�	�;>�%��	&#(�	�&�	�#��	����'� �	!)	�&��	&#(�	�&�	�#��	���;��	�)	%����%��+	%��0

�������$	&�'��$	#�+	%#(!�!��G	�&�	��+�'	#!�8#�	����	+#�#���	�&��'+	%���!��	�)	���	�;>�%�

8!�&���	 #��	 &�'��	 #�+	 %#(!�!��G	 �&���)���	 �&�	 �6�'����	  ����#�!��	 #' ��!�&�	 �&��'+

�-��#%�	�6�'����	8!�&���	#��	'����	��	+!�%����%��+	�� �����G



��	������	
��
��	
		�	����	

��	����
�	����	���������� ���

� �������������������
�	
�	����	
	���		�	������	
	�	����	

	
��	�����	��	�� 	������	����


	������	
	���������	 �����!��	
		�	
��	�	�		���!��	��
��
��	����	 �����!��	
"	#�	��

�

��
�	���	�
�
	��
�����
�	

 	���	$�

����	��	�� 	$�	!
�
�������� 	$�	�����	��
���
�	�	%

���&	 �
 �
�	 �	���	 

 	 ��
���"	 ����	 
	 !
�
�������
��	
	 ���!������	 �������	 !�	�����
�

����	!��
�
�	�

�����
��	$�

����	

 	
��	��	


�	���
�	�
$����
�		�	���	����"

� ����������	�	���	
��	�����	��	�� 	
	�	$�	��
������	�		������	��

���	�
	

		$'���	�����%

����		�	��	������	��

��	��
��	
�	����	
�	��

��
��	
		�	�	�
��	
"	H�
�	��	�	��	����
�%

�� 	������	
	��	�� 	
	�	������
��	
��	� �
�	�		��

���		�	��
���
�	

 	�
 �
�	�	���"

� ����������	�	���	
��	�����	��	�� 	����
��	
	������	
	�����	
��	�
���
���	����	��	����

�
���
���	
"	 #�	 �	
���
�	 ��!���
���	 
��	�
���	  ������

��	
	 �
��	 	�	 ���	 ����	 �����
�

��
���
�	

 	�
 �
�	�	���"

� ������������	�����	�	(	�	 �
���	

 	�	�!���
�� 	 
�
	�	�!��
��	

�	 ����	

 	���	��

������
��	
	
��	������
�"	������	��	
��	������	��	�� 	$�	�
��	�
	���	�		����
��	
	������	


�	�	�	�!���
�� 	
���
�	����	���������	 
�
	�
	���	
 �		
	��

 
� 	�)	�	�!����"

#�����������	
�����	
����	
��"��

In the last several decades many skeleton extraction algorithms have been constructed.
Most of them generate skeletons for general purposes which can be used in wide range of
different applications. However, some of them are dedicated to special task such as centre-
line generators derived from skeletonization algorithms which were refined to perform well
centreline descriptor for volumetric colon images for a virtual colonoscopy application. The
main reason to generate algorithms only for special approaches is that universal skeleton-
ization algorithms are not sufficient in all cases or they do not always satisify all conditions
(see section 3). This is also the reason why so many skeletonization methods have been
constructed so far. These algorithms can be divided into the following groups:

Manual extraction – These methods require significant manual work of a user who is
responsible for marking a centre of an object on each image slice of several hundred in
a dataset. Then the skeleton is linearly interpolated between consecutive marked points.
Unfortunately the method is time consuming, sometimes difficult to perform and does not
guarantee the centricity of marked points because of possible human mistakes.

Topological thinning – these algorithms delete, on each iteration, so called simple
points from the boundary of an object. A simple point is defined as an object point which
deletion does not change the object topology. The process stops when no more simple
points to delete is found.

Voxel coding based – A voxel coding scheme is a voxel by voxel recursive propagation
and assignment of integer codes to object voxels starting from a set of voxels which are
called seeds. Most of these algorithms use a special voxel coding called the distance trans-
form or an approximation of distance transform were the seed set consists of object bound-
ary voxels. Such a distance transform results in an image called a distance field which has



��* +���
,	�	��	����&	+
���
	-


�������&	.��
��	-	!��&	/
���
�	0
$	��

very useful property from skeleton generation point of view. Its ridges correspond to the
voxels that are local centres in the object. Based on the ridges various algorithms use vari-
ous approaches to build the skeleton. Usually the set of ridges is pruned and then remaining
voxels are connected in order to form one voxel wide connected skeleton. Methods based
on potential field are also assigned to this group. The methods take advantage of similar
strategy to generate skeleton, however they use different kinds of vector field than distance
transform coding.

Hybrid methods – These methods consist of different algorithms which cannot be sim-
ply categorized into previous groups. They work in different frameworks than voxel frame-
work for example in cubical complex framework, but use standard thinning scheme. It is
also possible, in one algorithm, to use both thinning and distance transform technique. For
instance, thinning constrained by medial axis.

In this article authors focus on different thinning approaches and hybrid methods based
on thinning which are the most popular group of skeletonization algorithms in real applica-
tion. In the next subsection we present only general view of algorithms way of working.

#��������������
�������"�

�
�����	
��"�

The first presented algorithm, developed by Ma and Sonka [8], belongs to the topolog-
ical thinning group. We denote this algorithm as FPT. The algorithm tests all border voxels
on each iteration. Once a voxel is visited the algorithm checks if it meets at least one of
a priori defined deleting constraints. If so the voxel is deleted. The process ends when it
does not delete any voxel in the last iteration. Points which are not deleted during the
process form the final skeleton. Ma and Sonka’s algorithm is based on the fully parallel
strategy and uses a set of predefined deleting templates to test neighbourhood of each
border voxel. When a voxel and its neighbourhood match at least one template then the
voxel is marked to be deleted. After examination of all border voxels the marked ones are
deleted by changing their values to 0.

Deleting templates are represented as cubic grids with three types of points (see Fig.
3). An object point and a background point are denoted with “•”, and “o” respectively.
A “don’t care point”, which means that it can be either object point or background point, is
unmarked. Ma and Sonka presented four classes of deleting templates (A, B, C and D).
Figure 4 shows the four basic template cores. The translation of the cores results in deleting
templates: six in class A, twelve in class B, eight in class C and twelve in class D [14]. We
tested upgraded version of Ma and Sonka’s algorithm [14]. It was proved that the original
algorithm do not preserve connectivity in specific cases [14]. In new version of the algo-
rithm 12 templates of class D were changed into new 32 ones. This change leads to the
connectivity preserving algorithm. What is more in order to preserve topology the algo-
rithm cannot delete so-called tail-points which are defined as line-end points or near-li-
ne-end points [14].



��	������	
��
��	
		�	����	

��	����
�	����	���������� ���

�������	1
�		�	 �����
�	���!�
���	2��3

�����#�	(	��	���!�
��	�	���"	)�
��	�&	0	&	)	

 	�	2��3

Taking into consideration all above the FPT algorithm can be expressed as follows:
Repeat

Mark every border point of an object
Repeat

Simultaneously delete every non tail-point which satisfies at least one deleting
template from class A, B, C, or D;

Until no point can be deleted;
Release all marked but not deleted points;

Until no marked point can be deleted;

#����$�
%���
��
��"�

�
�����	
��"��&�����	
�$
�������'�

���

The skeleton method presented in this sub-section is denoted CTA hereafter. Some new
basic notions have to be introduced to explain its skeletonization strategy. A more extensive
description is provided in [1].

We denote by Z the set of integers, N+ set of positive integers. Let E = Z3. Informally,
a simple point p of a discrete object X ⊂ E is a point which is “inessential” to the topology of
X. In other words, we can remove the point p from X without “changing the topology of X”.
Skipping some technical details, let A(x, X) be the set of points of X\{x} lying in
a neighborhood of x, and let Ab(x, X) be the set of points of the complementary of X (back-
ground) lying in a neighborhood of x. Then, T(x, X) (resp. Tb(x, X)) is called topological
number and denotes the number of connected components of A(x, X) (resp. Ab(x, X)).
A point x ∈ X is simple for X if and only if T(x, X) = Tb(x, X) = 1. Also, if a point x ∈ X is
such that Tb(x, X) = 1, then removing x from X does not create a new tunnel. Let X be any
finite subset of E. The subset Y of E is a homotopic thinning of X if Y = X or if Y may be
obtained from X by iterative deletion of simple points.



��� +���
,	�	��	����&	+
���
	-


�������&	.��
��	-	!��&	/
���
�	0
$	��

The main way of working of CTA algorithm is to delete simple points in parallel
until stability. Removing simple points is traditional topological thinning scheme like
in FPT algorithm. However, in general, removing at the same time two simple voxels
does not guarantee topology preservation. Bertrand and Couprie developed a new frame-
work, the critical kernel framework [2], relying on the cubical complexes, presented shortly
in the next subsection, to give a method on how to remove, in the voxel framework, multi-
ple simple points in the same time. Bertrand and Couprie originally proposed CTA and
some others generic thinning schemes which allow to compute a wide variety of skele-
tons based on critical kernels in [2]. Interested reader can find basic notions about critical
kernels in [2].

�����(�	���		�	�
��	!�	!	�� 	�
	2*3"	I���&	�	����	
��	��!����
�� 	$�	!	�
��"

J	���	�
���	���	�
��	��	��	��	���!��	

 	���	
����$	���		 	�
���	!�	!��	�	
�����
��	


	�	!	�
��	 �
	�� 	
�	�������	��	�	�	�		/"	���
��� 	��!�


��	
		�	 ������
�	!	���$��	!	�
��

�	
�����
��	
	

 	���	�	
��K��
���	
��	!����
�� 	�
	2*3

General way of working of CTA algorithm can be described as follows. First, in each
iteration all simple voxels are addressed. Instead of using masks like in the previous ap-
proach each voxel is tested by analysing its local topological numbers. The next step should
consist in removing all simple voxels in parallel. However to preserve topology additional
step is required. In this step thinning is constrained by set of voxels which are essential to
preserve topology. This set can be computed by using three mask proposed in [2] (see
Fig. 5). Such set of mask were designed thanks to critical kernels framework. For comput-
ing curvilinear skeleton all points which are curve points (T(x, X) = 2 and Tb(x, X) = 1) need
to be preserved, therefore they are add as constrained points. At the end all simple voxels
which do not belong to the constrain set are deleted.

#@ ;@

%@



�"	.6�'����!�#�!��	�)	,�'���#��	�!�8#�	����	.���%����� ��L

#�����"�

�
�����	
��"��&�����	
�$�&�����$	�)��*

The next algorithm, denoted as CCT hereafter and proposed in [4], is based on cubical
complex framework which is an alternative to the voxel framework used in both thinning
approaches presented earlier. We only introduce basic definitions of this framework below.

In the three dimensional cubical complex framework, objects are built with va-
rious kinds of basic elements: cubes, squares, lines and points. Let Z be the set of inte-
gers, we consider the family of sets 1

0F  and 1
1 ,F  such that 1

0 {{ } | ZF a a= ∈  and
1

1 {{ , 1} | Z}.F a a a= + ∈  Any subset f of Zn such that f is the Cartesian product of m elements
of 1

1F  and (n – m) elements of 1
0F  is called a face or an m-face of Zn, m is the dimension of f,

we write dim(f) = m. We denote by Fn the set composed of all m-faces in Zn, m ∈ {0, ..., n}.
A 0-face is called a vertex, a 1-face is an edge, a 2-face is a square, and a 3-face is a cube
(see Fig. 6).

�����+�	1�#�&!%#'	���������#�!��	�)?	#@	#	�0)#%�B	;@	#	
0)#%�B	%@	#	�0)#%�B	+@	#	�0)#%�	C�D

Let f  ∈ Fn. We set ˆ { | },nf g F g f= ∈ ⊆  and *ˆ ˆ \{ }.f f f=  Any element f̂  is a face
of f, and any element of *f̂  is a proper face of f. We call star of f the set

{ | },nf g F f g= ∈ ⊆
�

 and we write * \{ },f f f=
� �

 any element of f
�

 is a coface of f. It is
plain that ˆg f∈  if .f g∈ �

A set X of faces in Fn is a cell, or m-cell, if there exist an m-face f ∈X such that ˆ.X f=
The closure of a set of faces X is the set ˆ{ | }.X f f X− = ∪ ∈  The set X is \ .nF X

A finite set X of faces in Fn is a cubical complex if X = X –, and we write .nX F�  Any
subset Y of X which is also a complex is a subcomplex of X, and we write .Y X�

Thinning in cubical complex is performed by using elementary operation collapse [4].
It consists in removing two distinct elements (f, g) from complex X under the condition that
g is contained in f and is not contained in any other element of X.

Let ,nX F�  and let f, g be two faces of X. The face g is free for X, and the pair (f, g) is
a free pair for X if f is the only face of X such that g is a proper face of f.

Let ,nX F�  and let (f, g) be a free pair for X. The complex \{ , }X f g  is an elementa-
ry collapse of X.

Collapse operation is repeated several times to compute a skeleton. In each iteration
parallel removal of simple pairs is performed by rules presented in [4]. The algorithm re-
sults in curvilinear skeleton.

(�������
��������
����������	


This section presents test results of the above described algorithms. Moreover it con-
tains the discussion of the algorithms properties concluded from the results. All tests have

#@ ;@ %@ +@



��A �!%&#5	,����'�6!$	�#�%!�	7#�#���8�6!$	9�6#��	7���6$	*#�����	:#;���

been performed, with the use of ten real human computer tomography chest dataset
acquired using GE LightSpeed VCT multidetector CT scanner. The set of stack images is of
size 512×512 and voxel dimensions are: x = y = 0.527 mm, z = 0.625 mm. All of datasets
where segmented to extract airway tree structure by using very reliable approach based on
hole closing [12]. It is worth emphasizing that application of a reliable segmentation method,
prior to skeletonization, was very important, because simple algorithms such as popular
standard region growing approach usually generates very distorted airway tree with leaks or
with many cavities or holes (see Fig. 7). This makes impossible the generation of proper
skeleton and in consequence bias the comparition between skeletonization algorithms.

Algorithm FPT was implemented by authors. Algorithms CTA and CCT where imple-
mented thanks to theirs authors M. Couprie, G. Bertrand and J. Chaussard from University
Paris-Est, France. Moreover, CTA algorithm was taken from the image processing library
called PINK [16].

All performed tests consist of application of all implemented algorithms to skeletonize
all datasets and after that generated skeleton properties where checked. Since quantitative
descriptors of skeleton properties is very hard to achive all of generated skeletons were only
visually checked to apprehend if they meet all conditions of good skeleton principles de-
scribed in section 3. Centricity feature were analysed by superimposing skeleton and
pruned medial axis of an object. The medial axis was pruned to preserve only thin segments
exactly in the centre of an input object [5]. Such a strategy makes the pruned medial axis
a good descriptor of an object centre.

�����,�	�	�#��	�)	�6�'����	�)	%��������+!� 	#!�8#�	����	����%����	E#@	����%����	)���	#@	%��(����+

��	#M �#�&	E;@G	�&�	 ����#��+	 �#�&	!�	���	�4�!(#'���	��	�&�	��#'	����	����%����

The results are presented in Figures 8 and 9. FPT algorithm produces smooth skeleton
which crosses the centre of an airway tree. However; FPT algorithm does not generate min-
imal possible skeleton in all cases, because it also generates some flat, one voxel wide sur-
faces (see Fig. 9b). A flat surface is the result of inadequate set of deleting templates. If an

#@ ;@



�"	.6�'����!�#�!��	�)	,�'���#��	�!�8#�	����	.���%����� ��4

object is thin and flat or in previous iteration the algorithm generated one voxel thin surfac-
es then proposed deleting templates can not work properly. In such cases the remaining
object voxels do not meet any deleting condition. Therefore the fully parallel algorithm
needs significant refinement to meet singularity condition.

CTA algorithm generates minimal possible skeleton which is a very good descriptor of
whole tree. Moreover the algorithm reveals little sensitivity to noise and generates all im-
portant branches. However, detailed analysis of produced skeleton showed that in some
cases the skeleton is not as well centred as the skeleton generated with FPT (see Fig. 9d). In
such cases CTA produces a skeleton which does not cover medial axis points, instead the
skeleton “oscillates” around such points. It can be important source of measurement errors
in further quantitative airway analysis.

�����-�	�-���'#��	����'�	�)	�����+	#' ��!�&��?	#@	3,�B	;@	���B

%@	���G	1����#��+	�6�'����	!�	�����!�����+	��	�&�	%��������+!� 	����

#@ ;@

%@



��< �!%&#5	,����'�6!$	�#�%!�	7#�#���8�6!$	9�6#��	7���6$	*#�����	:#;���

�����.�	5!��#'	!����%�!��	�)	!�������!� 	�#���	�)	 ����#��+	�6�'�����G

#F%@	3,�B	+F�@	���B	)F @	���	#' ��!�&��	�����%�!(�'�G

1�#�	+���	+�����	(�-�'�	�)	�����+	��+!#'	#-!�

The last tested algorithm (CCT), uses cubical complex framework and in consequence
it generates a skeleton which consists only of edges of voxels. Therefore a skeleton is build
using lines instead of cubes (see Fig. 9f). This feature has many interesting advantages from

#@ ;@ %@

+@ �@ ) @

 @



�"	.6�'����!�#�!��	�)	,�'���#��	�!�8#�	����	.���%����� ��=

quantitative airway analysis point of view. First of all, generated skeleton has very good
centricity feature – is situated exactly at the centre of medial axis points. Similarly to CTA
algorithm, CCT method addresses all important branches of a tree and it is not sensitive to
the small noise in a tree structure. Moreover a skeleton generated with CCT consists of only
lines (no surfaces) so it can be easily converted to a graph which is a very important advan-
tage from bronchial tube analysis point of view, where the graph representation is needed
for further analysis. Skeletons generated with the use of voxel framework algorithms need
additional post-processing to convert voxel representation into graph representation which
is not a simple task. In case of some voxel framework algorithms it is even impossible to
create graph representation without loosing centricity or exact representation of an airway
tree (see Fig. 7). It means that all tested methods which produce voxels, poorly meet para-
meterization condition. To conclude, the CCT algorithm meet both parameterisation and
automation conditions.

The summary of characteristic of all tested algorithms is presented in table 1. Taking
all above into consideration, from author’s point of view, the best strategy to skeletonize
airway trees is to use novel CCT algorithm which is based on cubical complex framework.
It is worth emphasising that, as far as we know, this is the first time where abstract frame-
work based methods are applied to skeletonize bronchial trees.

The computing time of each algorithms were also evaluated. All tested algorithms have
a linear time complexity. On standard PC platform computer with Pentium dual core 2GHz
processors, each computing time did not exceed several seconds. Unfortunately, exact time
comparison between algorithms is useless because of different implementation and strong
code optimisation technique in CTA and CCT algorithms. However, computing time is not
crucial in quantitative analysis of the human airway tree applications since no characterisa-
tion are made in real time.

��&����

����#�!���	�)	�6�'����	%&#�#%���!��!%�	 ����#��+	;�	3,�$	���$	���	#' ��!�&��

 FPT CTA CCT 

Connectivity Poor Very good Very good 

Centricity Good Good Very good 

Singularity Poor Good Very good 

Topology preserving Poor Very good Very good 

Robustness Poor Very good Very good 

Parameterisation Poor Good Very good 

Automation Very good Very good Very good 



�L� �!%&#5	,����'�6!$	�#�%!�	7#�#���8�6!$	9�6#��	7���6$	*#�����	:#;���

+��$	
�����	


In the article three skeletonization algorithms which belong to the most popular group
(topological thinning) were tested. Algorithms have been used to skeletonize human airway
trees segmented from CT images as a part of medical quantitative airway tree analysis. Re-
sults showed that algorithms have different characteristic and produce different skeletons.
Algorithms FPT and CTA have some drawbacks, especially problems concerning of pro-
ducing “minimal” possible curvilinear skeleton, achieving very good centricity and they do
not meet parameterization features. In consequence they can be source of errors in further
quantitative analysis or in some cases make it even impossible. That drawbacks need to be
eliminated, to make the algorithms useful in a bronchial tree analysis system, by using so-
phisticated refinement procedures e.g. [11].

The CCT algorithm is the best and the most interesting one because it has a set of
intrinsic properties which are very hard to achieve in voxel framework. Detailed analysis
of features of generated skeletons showed that CCT algorithm meet all condition of good
skeleton. Moreover, it allows simple decomposition of a tree and its conversion to a graph
without risk of changing tree structure. In consequence it can be successfully used in quan-
titative analysis task and it is very good alternative to traditional voxel framework methods.
Moreover, it is the first time that an algorithm based on cubical complex is used in such
medical application. It makes cubical complex based methods interesting field of further
research.

From authors’ point of view, selecting proper skeletonization algorithm is a very im-
portant step in building a system for quantitative analysis of airway trees, because accuracy
of measurements strongly depends on quality of a generated skeleton. Furthermore, a skele-
ton is also used for different purposes such as anatomical labeling of a tree or registration
and matching two different airways acquired in different time for monitoring progress of
pathological changes. Therefore, it is very important to test different skeletonization tech-
niques in real world applications.

In the future the authors plan to compare more skeletonization methods and made
some improvements if necessary to obtain skeletons which meet all postulates presented in
this paper.

���
	��������
��

The authors would like to thank PINK library developer team and would also thank
J. Chaussard from University Paris-Est, France, for his implementation of CCT algorithm.

The authors would like to thank prof. Ludomir 
�������
�� ����Mariusz  !����"��
�#
Medical University ���$%�&��������	����������������������������������scussions which have
significant influence on this work.

�'�����'����()���������������$)� �����������'�����'���'�������������"�������������*+�,

��	���	�����������-.������������
�/��������
������0���)



�"	.6�'����!�#�!��	�)	,�'���#��	�!�8#�	����	.���%����� �L


/���
�
���

C
D :����#�+	 1G$	 
������ ������#� ������������ �������� ���� ��������� ����'���'����� ��� ������ �����)

,#�����	N�%� �!�!��	*������$	(�'G	
LE
�@$	
==�$	
���F
�

G

C�D :����#�+	1G$	�����!�	�G$	����1�23���������� �'���������'�����������������������������)	*�%����

2����	!�	��������	.%!��%�$	(�'G	���L$	���A$	L<�FL=
G

C�D :'��	6G$	��������������������4�����������1������������������'���)���+�'�	)��	�&�	,��%���!���	�)

.���%&	#�+	5!��#'	3���$	
=A4$	�A�F�<�G

C�D �&#���#�+	7G$	�����!�	�G$	
��������'����������23���������������4��)	*�%����	2����	!�	��������

.%!��%�$	(�'G	L<L�$	���=$	
�LF
�<G

CLD �����!�	�G$	�����>�''�	"G$	�����	NG$	3������������������������������/���������������������53����

23)�/�# �	#�+	5!�!��	������!� $	(�'G	�LE
�@$	���4$	
L��F
LLAG

CAD 1�#&#�	�G7G$	 1!;;�	 7G"G$	6!  !��	7G�G$	������� �
����� ���� '����� ���1�
,����� ������������)

,��%G	.,/�$	(�'G	A=
�$	���<G

C4D ��� 	�G�G$	N����)�'+	�G$	3��������������
6���������������������	�
)���������	5!�!��$	1�#�&!%�$

#�+	/�# �	,��%���!� $	(�'G	�<$	
=<=$	�L4F�=�G

C<D �#	�G�G$	.��6#	�G$	������
���������23��'��������������'����������������������)���������	5!�!��$

#�+	/�# �	��+����#�+!� $	(�'G	A�$	
==A$	���F���G

C=D �#���	 "G$	 :#���	 "G$	 *��	 .G$	 �&���	 .G$	6�����'	 �G,G$	 �#�%���	6�G$	 .��#���	7G$	 
�����������

����	��������4�����������������'�������'���������)�/�����#�!��#'	��� ����	.��!��$	(�'G	
�LA$	����$

�LF��G

C
�D ,#'# �!	�G$	��2,�������������23��'��������������'�������4������������������������)	,#�����	N�%�0

 �!�!��	*������$	(�'G	��$	����$	AA�FA4LG

C

D ,#'# �!	�G$	��%&!����	7G$	6�))�#�	�G�G$	.��6#	�G$	7���������	������
���������������
����1�
�����

���������)����������	!�	:!�'� �	#�+	��+!%!��$	(�'G	�AE=@$	���A$	=4�F==AG

C
�D ,����'�6!	�G$	7#�#���8�6!	�G$	3#;!>#��6#	�G$	:#;���	*G$	�����!�	�G$	7�+���>%��6	�G$	.��)#�%��6

*G$�������������1�
����������������������������'��������������������'����1����)��+(#�%��	!�	.�)�

������!� ?	��������	N�%� �!�!��	.������	�$	(�'G	L4$	���=$	�<=F�=AG

C
�D ��%&!����	 7G$	6�))�#�	�G�G$	�%*���#�	1G$	 .��6#	�G$	 +�����'������� ���1�
� ������ ������������

�������1�
�����'����
)�/���	��#��G	��+G	/�# !� $	(�'G	��E
�@$	���L$	
L�=F
L�=G

C
�D 7#� 	�G$	:#��	�G$�����������������
����������23��'��������������'����������������������)	,#�����

N�%� �!�!��	*������$	(�'G	�<E�@$	���4$	L�
FL�AG

C
LD �&��	�G$	�� #	7G$	/����������������������������	������������"����)	/���	��#��#%�!��	��	5!��#'!�#0

�!��	#�+	��������	1�#�&!%�$	(�'G	L$	
===$	
=AF��=G

C
AD ,/2�	*!;�#��	&���?��888G��!��G)���%����!��G



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




