Warianty tytułu
Model abstrakcyjny dynamiki rozprzestrzeniania się zanieczyszczeń w rzece
Języki publikacji
Abstrakty
In this paper a dynamical model of propagation of pollutants in a river with M point controls in the form of aerators and K point measurements is being transformed to an abstract model on a suitably chosen Hilbert space. Our model belongs to the class of abstract models of the factor-type. It is shown that the semigroup generated by the state operator A has a property of decaying in a finite-time, the observation operator is admissible, and the system transfer function is in the space H∞ (C+, L(CM, CK)). In the final part we also formulate the LQ problem with infinite-time horizon.
W artykule przekształcany jest model dynamiczny rozprzestrzeniania się zanieczyszczeń w rzece, z punktowymi sterowaniami w postaci M aeratorów i K punktami pomiarowymi, do modelu abstrakcyjnego na odpowiednio dobranej przestrzeni Hilberta. Model abstrakcyjny jest typu sfaktoryzowanego. Pokazano, że półgrupa generowana przez operator stanu A ma własność zanikania w skończonym czasie, operator obserwacji jest dopuszczalny i transmitancja systemu należy do przestrzeni H∞ (C+, L(CM, CK)). W końcowej części pracy formułuje się problem liniowo-kwadratowy z nieskończonym horyzontem czasowym.
Rocznik
Tom
Strony
169-182
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Institute of Automatics, AGH University of Science and Technology, Krakow
autor
- Institute of Automatics, AGH University of Science and Technology, Krakow
Bibliografia
- [1] Balakrishnan A.V., Applied Functional Analysis. 2nd edition. New York, Springer-Verlag 1981.
- [2] Chapelon A., Xu C.Z., Boundary control of class of hyperbolic systems. European Journal of Control, No. 9, 2003, 589-604.
- [3] Dojlido J.R., Chemistry of Water. Warsaw, Arkady 1987 (in Polish).
- [4] Grabowski P., The lq controller problem: an example. IMA Journal of Mathematical Control and Information, No. 11, 1994, 355-368.
- [5] Grabowski P., On the circle criterion for boundary control systems in factor form. Opuscula Mathematica, No. 23, 2003, 25-47
- [6] Grabowski P., An introduction to control of distributed parameter systems. http: / /www. ia.agh.edu.pl/~pgrab/grabowski_files/hypertest, Last version: January 10, 2008.
- [7] Grabowski P., A note on dissipativity and stability of a class of hyperbolic systems. 2000, http: www.ia.agh.edu.pl/~pgrab/grabowski_fileś/dysypaty/hiperb4.xml.
- [8] Grabowski P., Callier F.M., Boundary control systems in factor form: Transfer functions and input-output maps. Integral Equations Operator Theory, vol. 41, No. 1, 2001, 1-37.
- [9] Hullett W., Optimal estuary aeration: An application of distributed parameter control theory. Applied Mathematics and Optimization, vol. 1, No. 1, 1974, 20-63.
- [10] Kowal A.L., Swiderska-Bróż M., Water Clarification. Warsaw, PWN 1996 (in Polish).
- [11] Kraszewski A.K., Identification of River Water Quality. Warsaw, The Warsaw University of Technology Press 1999 (in Polish).
- [12] Kraszewski A., Soncini-Sessa R., WODA, a model of river water quality. Users manual, version 3.0. Warsaw, Warsaw University of Technology 1991 (in Polish).
- [13] Lasiecka I., Triggiani R., Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. Lecture Notes in Control and Information Sciences, vol. 164, Berlin, Springer-Verlag 1991.
- [14] Malinen J., Discussion on: "Boundary control of class of hyperbolic systems". European Journal of Control, No. 9, 2003, 605-607.
- [15] Osmulska-Mróz B., Application of dimensionless variables and parameters in modelling of flowing water quality. Proceedings of the Research Session: Modelling of Flows and Water Quality, organized on the occasion of the 70th birthday of Professor Jerzy Boczar. Szczecin, Technical University of Szczecin Press 1995 (in Polish).
- [16] Sowiński M., Neugebauer A., Calibration of water-quality model "WODA" case study of the Warta river. Journal of Environmental Engineering and Landscape Management, vol. 15, No. 2, 2007, 93-98.
- [17] Staffans O.J., Quadratic optimal control of stable systems through spectral factorization. Mathematics of Control, Signals and Systems, vol. 8, No. 2, 1995, 167-197.
- [18] Staffans O.J., Quadratic optimal control through coprime and spectral factorizations. Abo Akademi Reports on Computer Science &Mathematics, Ser. A, No. 178, 1996, http:// web.abo.fi/~staffans/publ.html.
- [19] Szymkiewicz R., Mathematical Modelling of Flows in Rivers and Channels. Warsaw, PWN 2000 (in Polish).
- [20] Triggiani R., An optimal control problem with unbounded control operator and unbounded observation operator where the algebraic Riccati equation is satisfied as a Lapunoy equation. Applied Mathematical Letters, vol. 10, No. 2, 1997, 95-102.
- [21] Walker J.A., Dynamical Systems and Evolution Equations. Theory and Applications. New York,Plenum Press 1980.
- [22] Weiss G., Weiss M., Optimal control of stable weakly regular linear systems. Mathematics of Control, Signals and Systems, vol. 10, No. 4, 1997, 287-330.
- [23] Weiss G., Zwart H., An example in linear quadratic optimal control. System and Control Letters, vol. 33, No. 5, 1998, 339-349.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH1-0017-0008