Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Nr 9 | 382--385
Tytuł artykułu

Archeony utleniające amoniak w osadzie czynnym i błonie biologicznej - przegląd literatury i badania wstępne

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Ammonia-oxidizing Archaea in activated sludge and biofilm - preliminary research
Języki publikacji
PL
Abstrakty
PL
Przez wiele lat uważano, że utlenianie amoniaku prowadzone jest wyłącznie przez bakterie utleniające amoniak (ang. ammonia oxidizing bacteria, AOB).Niedawne doniesienia rzuciły nowe światło na ten proces – wykazano że jest on prowadzony również przez archeony utleniające amoniak posiadające gen amoA (ang. amoA-encoding archaea, AEA).Rola tej grupy mikroorganizmów na oczyszczalniach ścieków nie jest do końca poznana. Istnieje wiele wątpliwości dotyczących fizjologii archeonów oraz ich udziału w procesie utleniania amoniaku. W celu zgłębienia wiedzy w tym temacie, dokonano przeglądu obecnie dostępnej literatury, a własne badania wstępne pozwoliły na zaproponowanie dalszego kierunku badań.
EN
For many years it was believed that ammonia oxidation process is carried out only by ammonia oxidizing bacteria (AOB). Recent discoveries have shed new light on this process – it was shown that it is also performed by ammonia-oxidizing archaea encoding amoA gene (amoA-encoding archaea, AEA). The role of this group of microorganisms in wastewater treatment plants is still not fully understood. There are many doubts concerning archaeal physiology and their contribution to the ammonia oxidation process. To explore knowledge on this topic, a review of currently available literature was done. Moreover, author’s preliminary research allowed for proposal of further investigations’ direction.
Wydawca

Rocznik
Tom
Strony
382--385
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Politechnika Warszawska, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Zakład Zaopatrzenia w Wodę i Odprowadzania Ścieków, ul. Nowowiejska 20, 00-653 Warszawa, piechna.paula@gmail.com
  • Politechnika Warszawska, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Zakład Zaopatrzenia w Wodę i Odprowadzania Ścieków, ul. Nowowiejska 20, 00-653 Warszawa, monika.sudol@pw.edu.pl
  • Politechnika Warszawska, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Zakład Biologii, ul. Nowowiejska 20, 00-653 Warszawa, adam.muszynski@ pw.edu.pl
  • Centrum NanoBioMedyczne, Uniwersytet Adama Mickiewicza w Poznaniu, ul. Umultowska 85, 61-614 Poznań, lucprzy@amu.edu.pl
Bibliografia
  • [1] Bai Y., Sun Q., Wen D., & Tang X. 2012. Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. FEMS Microbiology Ecology, 1-8.
  • [2] Chen S., Peng X., Xu H., & Ta K. 2016. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring. Biogeosciences, 13, 2051-2060.
  • [3] Dang H., Li J., Zhang X., Li T., Tian F., & Jin W. 2009. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin. Journal of Applied, 106, 1482-1493.
  • [4] de la Torre J.R., Walker C.B., Ingalls A.E., Könneke M., & Stahl D.A. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 10(1), 810-818.
  • [5] Erguder T.H., Boon N., Wittebolle L., Marzorati M., & Verstraete W. 2009. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews, (33), 855-869.
  • [6] Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., & Oakley B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean, 102(41), 14683-14688.
  • [7] Gao J., Luo X., Wu G., Li T., & Peng Y. 2013. Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants. Bioresource Technology, 138, 285-296.
  • [8] Hatzenpichler R. 2012. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea. Applied and Environmental Microbiology, 78(21), 7501-7510.
  • [9] Jia Z., & Conrad R. 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11(7), 1658-1671.
  • [10] Jin T., Zhang T., & Yan Q. 2010. Characterization and quantification of ammonia- oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Environmental Biotechnology, 87, 1167-1176.
  • [11] Jung M., Park S., Min D., Kim J., Rijpstra W.I.C., Kim G., … Icrobiol A.P.P.L.E.N.M. 2011. Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I. 1a from an Agricultural Soil †. Applied and Environmental Microbiology, 77(24), 8635-8647.
  • [12] Jung M., Well R., Min D., Giesemann A., Park S., Kim J., … Rhee S. 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME Journal, 8(5), 1115-1125.
  • [13] Könneke M., Bernhard A.E., de la Torre J.R., Walker C.B., Waterbury J.B., & Stahl D. A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(22), 543-546.
  • [14] Kozlowski J.A., Stieglmeier M., Schleper C., Klotz M.G., & Stein L.Y. 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. The ISME Journal, 1-10.
  • [15] Lebedeva E.V., Hatzenpichler R., Pelletier E., Schuster N., Hauzmayer S., Bulaev A., … Wagner M. 2013. Enrichment and Genome Sequence of the Group I. 1a Ammonia-Oxidizing Archaeon “ Ca. Nitrosotenuis uzonensis " Representing a Clade Globally Distributed in Thermal Habitats. PLOS ONE, 8(11), 1-12.
  • [16] Li Y., Ding K., Wen X., Zhang B., Shen B., & Yang Y. 2016. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Nature Publishing Group, (October 2015), 1-11.
  • [17] Limpiyakorn T., & Fürhacker M. 2013. AmoA-encoding archaea in wastewater treatment plants: a review. Applied Mi, 97, 1425-1439.
  • [18] Limpiyakorn T., Sonthiphand P., Rongsayamanont C., & Polprasert C. 2011. Bioresource Technology Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 102(4), 3694-3701.
  • [19] Loscher C.R., Kock A., Konneke M., LaRoche J., Bange H.W., & Schmitz R. A. 2012. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences, 9, 2419-2429.
  • [20] Martens-Habbena W., Qin W., Horak R.E.A., Urakawa H., Schauer A.J., Moffett J.W., … Stahl D.A. 2015. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environmental Microbiology, 17(7), 2261-2274.
  • [21] Marusenko Y., Bates S.T., Anderson I., Johnson S.L., Soule T., & Garcia-pichel F. 2013. Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecological Processes, 2(9), 1-10.
  • [22] Mußmann M., Brito I., Pitcher A., Sinninghe J.S., Hatzenpichler R., & Richter A. 2011. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. PNAS, 108(40), 2-7.
  • [23] Nicol G.W., & Schleper C. 2006. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle ? TRENDS in Microbiology, 14(5).
  • [24] Park H., Wells G.F., Bae H., Criddle C.S., Francis C.A., & Al P.E.T. 2006. Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors. Applied and Environmental Microbiology, 72(8), 5643-5647.
  • [25] Santoro A.E., Buchwald C., McIlvin M.R., & Casciotti K.L. 2011. Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea. SCIENCE, 333 (September), 1282-1285.
  • [26] Sauder L.A., Peterse F., Schouten S., & Neufeld J.D. 2012. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environmental Microbiology, 14(9), 2589-2600.
  • [27] Schleper C., Nicol G.W., 2010. Ammonia-oxidising archaea - physiology, ecology and evolution. Advances in Microbial Physiology 57, 1-41.
  • [28] Short M.D., Abell G.C.J., Bodrossy L., & Akker B. Van Den. 2013. Application of a Novel Functional Gene Microarray to Probe the Functional Ecology of Ammonia Oxidation in Nitrifying Activated Sludge. PLOS ONE, 8(10), 1-11.
  • [29] Sonthiphand P., & Limpiyakorn T. 2011. Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Environmental Biotechnology, 89, 843-853.
  • [30] Spang A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ Microbiol. 14, 3122-3145 (2012).
  • [31] Treusch A.H., Leininger S., Kletzin A., Schuster S.C., & Schleper C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7(12), 1985-1995.
  • [32] Vajrala N., Martens-Habbena W., Sayavedra-soto L.A., Schauer A., & Bottomley P.J. 2013. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. PNAS, 110(3), 1006-1011.
  • [33] Venter J.C., Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., … Smith H.O. 2004. Environmental Genome Shotgun Sequencing of the Sargasso Sea. SCIENCE, 304(5667), 66-74.
  • [34] Walker C.B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. P Natl Acad Sci USA 107, 8818-8823 (2010).
  • [35] Wells G.F., Park H., Yeung C., Eggleston B., Francis C.A., & Criddle C.S. 2009. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor : betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology, 11(9), 2310-2328.
  • [36] Yapsakli K., Aliyazicioglu C., & Mertoglu B. 2011. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant. Journal of Environmental Management, 92(3), 714-723.
  • [37] Ye L., & Zhang T. 2011. Ammonia-Oxidizing Bacteria Dominates Over Ammonia- Oxidizing Archaea in a Saline Nitrification Reactor Under Low DO and High Nitrogen Loading. Biotechnology and Bioengineering, 108(11), 2544-2552.
  • [38] Zhalnina K.V., Dias R., Leonard M.T., Quadros P.D. De, Camargo F.A.O., Drew J.C., … Triplett E.W. 2014. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I. 1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea. PLOS ONE, 9(7), 21-23.
  • [39] Zhang T., Jin T., Yan Q., Shao M., Wells G., Criddle C., & Fang H.H.P. 2009. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants, 107, 970-977.
  • [40] Zhang T., Lin Y., & Y A.H. 2011. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Environmental Biotechnology, 91, 1215-1225.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aff08846-9136-4f58-8066-93a0b42382aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.