Warianty tytułu
Określenie warunków maksymalnego odcynkowania mieszanki materiałów żelazonośnych w procesie spiekania na podstawie obliczeń numerycznych z wykorzystaniem programu termochemicznego FactSage
Języki publikacji
Abstrakty
Multi-million tons of sludge produced as a result of wet dedusting of blast furnace and converter gases have been deposited in landfills across the country. These materials are also created on an ongoing basis. Due to the high iron content, their potential as a ferrous raw material is significant. Unfortunately, in addition to components which are desirable from the point of view of metallurgical processes such as Fe, C and CO, they also contain many harmful elements such as Zn, Pb, Na and K. The article describes the sources and form of Zn found in post-production waste of steelworks and the methods of removing zinc from ferrous waste materials. The optimal conditions for zinc removal during the sintering process of galvanised ferrous materials were identified using thermochemical calculations carried out with the FactSage computer program.
Na terenie kraju na składowiskach zdeponowano wielomilionowe ilości ton szlamów powstałych w wyniku mokrego odpylania gazów wielkopiecowych i konwertorowych. Materiały te powstają także na bieżąco. Z uwagi na dużą zawartość żelaza ich potencjał jako surowca żelazonośnego jest znaczący. Niestety oprócz pożądanych składników z punktu widzenia procesów metalurgicznych Fe, C, CO, zawierają one także wiele pierwiastków szkodliwych takich jak: Zn, Pb, Na, K. W artykule opisano źródła pochodzenia i postać Zn występującego w odpadach poprodukcyjnych hut oraz metody usuwania cynku z odpadowych materiałów żelazonośnych. Dokonano identyfikacji optymalnych warunków usuwania cynku w czasie procesu spiekania zacynkowanych materiałów żelazonośnych, dokonując obliczeń termochemicznych przy użyciu programu komputerowego FactSage.
Czasopismo
Rocznik
Tom
Strony
61--74
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network - Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland, ireneusz.szypula@imz.lukasiewicz.gov.pl
autor
- Łukasiewicz Research Network - Institute for Ferrous Metallurgy
autor
- Łukasiewicz Research Network - Institute for Ferrous Metallurgy
autor
- Łukasiewicz Research Network - Institute for Ferrous Metallurgy
Bibliografia
- [1] Material Circularity Indicators. [Online] Available at: https://ellenmacarthurfoundation.org/material-circularity-indicator. [Accessed on: 14.03.2019].
- [2] M. Geissdoerfer, P. Savaget, N.M.P. Bocken, E.J. Hultink. The Circular Economy - A new sustainability paradigm? Journal of Cleaner Production, 2017, 143, pp. 757-768. Doi: 10.1016/j.jclepro.2016.12.048.
- [3] F. Kukurugya, A. Rahfeld, R. Möckel, P. Nielsen, L. Horckmans, J. Spooren, K. Broos. Recovery of iron and lead from a secondary lead smelter matte by magnetic separation. Minerals Eng. 2018, 122, pp. 17-25.
- [4] S. Mustafa, L. Luo , B.-T. Zheng, Ch.-X. Wei, Ch. Niyonzima. Effect of Lead and Zinc Impurities in Ironmaking and the Corresponding Removal Methods: A Review. Metals, 2021, 11 (3), p. 407-425. Doi: 10.3390/met11030407.
- [5] F.M. Martins, J.M. dos Reis. Neto, C.J. da Cunha. Mineral phases of weathered and recent electric arc furnace dust. J. Hazard. Mater. 2008, 154 (1-3), pp. 417-425.
- [6] R. Remus, M.A. Aguado-Monsonet, S. Roudier, L. Delgado Sancho. Best Available Techniques (BAT) Reference Document for Iron and Steel Production. Industrial Emissions Directive 2010/75/EU, (Integrated Pollution Prevention and Control). [Online] Available at: https://eippcb.jrc.ec.europa. eu/sites/default/files/2019-11/IS. [Accessed on: 03.2012].
- [7] F. Goetz. The Mechanism of B.O.F. Fume Formation. Thesis, MEng. McMaster University, 1980.
- [8] J. Steer, C. Grainger, A. Griffiths, M. Griffiths, T. Heinrich, A. Hopkins. Characterisation of BOS steelmaking dust and techniques for reducing zinc contamination. Ironmaking and Steelmaking, 2014, 41 (1), pp. 61-66.
- [9] T. Heinrich. Reducing zinc contamination in basic oxygen steelmaking dust. Thesis, PhD. Cardiff University, 2016. [Online] Available at: https://orca.cardiff.ac.uk/96232/
- [10] S. Wolff, B. Mill. Technologie otrzymywania cynku i jego związków z rud i surowców odpadowych. Skrypty Uczelniane nr 1470. Gliwice: Wydawnictwo Politechniki Śląskiej, 1989.
- [11] M. Ranjan, N.B. Dhokey. Dezincification from Blast Furnace Sludge/Dust. Project Report, 2018. [Online] Available at: https://www.researchgate.net/profile/Lav-Singh/publication/334760609_Dezincification_from_Blast_Furnace_SludgeDust/links/5d3fd74392851cd04691f68d/Dezincification-from-Blast-Furnace-Sludge-Dust.pdf.
- [12] P. Butterworth, K. Linsley, J. Aumonier. Hydrocyclone treatment of blast furnace slurry within British Steel. Rev. Met. Paris, 1996, 93 (6), pp. 807-816.
- [13] N. Leclerc. E. Meux, J.-M. Lecuire. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70 (1-3), pp. 175-183.
- [14] Y. Sawa, T. Yamamoto, K. Takeda, H. Itaya. New coal based process to produce high quality DRI for the EAF. ISIJ Int., 2001, 41, pp. 17-21.
- [15] B. Liu, Y. Zhang, M. Lu., Z. Su, G. Li, T. Jiang. Extraction and separation of manganese and iron from ferruginous manganese ores: A review. Minerals Eng. 2019, 131, pp. 286-303.
- [16] N. Ma. Recycling of basic oxygen furnace steelmaking dust by in-process separation of zinc from the dust. J. Clean. Prod. 2016, 112 (5), pp. 4497-4504. doi: 10.1016/j.jclepro.2015.07.009.
- [17] I. Jaafar. Chlorination for the Removal of Zinc From Basic Oxygen Steelmaking (BOS) By-product. Thesis, PhD. Cardiff University, 2014.
- [18] M. Crueels, A. Roca, C. Nunez. Electric arc furnace flue dusts: characterization and leaching with sulphuric acid. Hydrometallurgy, 1992, 31, pp. 213-231.
- [19] E.E.A. Cecchi. A feasibility study of carbochlorination of chrysotile tailings, International Journal of Mineral Processing, 2009, 93, pp. 278-283.
- [20] I. Gaballah, M. Djona. Recovery of Co, Ni, Mo, and V from unroasted spent hydrorefining catalysts by selective chlorination. Metallurgical and Materials Transactions B, 1995, 26, pp. 41-50.
- [21] C.K. Gupta. Chemical Metallurgy: Principles and Practice, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003. [Online] Available at: https://web.vscht.cz/~vun/Metallurgy.pdf.
- [22] I. Gaballah, M. Djona, J.C. Mugica, R. Solozobal. Valuable metals recovery from spent catalysts by selective chlorination. Resources, Conservation &Recycling, 1994, 10, pp. 87-96.
- [23] N. Kanari, E. Allain, R. Joussemet, J. Mochon, I. Ruiz-Bustinza, I. Gaballah. An overview study of chlorination reactions applied to the primary extraction and recycling of metals and to the synthesis of new reagents. Thermochimica Acta, 2009, 495, pp. 42-50. [Online] Available at: https://www.academia. edu/23568900/An_overview_study_of_chlorination_reactions_applied_to_the_primary_extraction_and_recycling_of_metals_and_to_the_synthesis_of_new_reagets
- [24] C.C.-Y. Chan. Behaviour of metals in MSW incinerator fly ash during roasting with chlorinating agents. Doctor of Philosophy, University of Toronto, 1997. [Online] Available at: https:// tspace.library.utoronto.ca/bitstream/1807/10790/1/NQ27620. PDF.
- [25] D. Shishin, J. Chen, E. Jak, P. Hayes. Aplication of FactSage for iron sinter optimisation, In: 5th BAJC Conference 2017. Gold Coast February 20, 2017.
- [26] Praca zbiorowa. Poradnik fizykochemiczny. Warszawa: Wydawnictwo Naukowo-Techniczne, 1974, p. 167.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-afd9a72e-6aaa-4e00-b5b8-df8c56c1ba2a