Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 33 nr 4 | 185--206
Tytuł artykułu

Role of the elementary reactions during combustion of gas from underground coal gasification in a isothermal perfectly stirred reactor

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses the concentration sensitivity and presents the calculation results of combustion of different gases from the underground coal gasification (UCG) in the premixed flame in air ratio 1.1. The key reactions were indicated and their role as well as their influence on the combustion of UCG gases were considered.
Wydawca

Rocznik
Strony
185--206
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
Bibliografia
  • [1] Westbrook Ch.K., Dryer F.L. Chemical kinetic modeling of hydrocarbon combustion. Prog. Energ. Combust. Sci., 10, (1984), pp. 1-57
  • [2] Miller J.A., Bowman C.T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energ. Combust. Sci., 15, (1989), pp. 287-338
  • [3] Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S.,. Gardiner W.C, Jr., Lissianski V.V., Zhiwei Qin http://www.me.berkeley.edu/gri_mech/
  • [4] Konnov A.A. Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons. 28-th Symposium (Int.) on Combustion, Edinburgh, 2000. Abstr. Symp. Pap. pp. 317
  • [5] Glassman I., Combustion, 3rd ed., San Diego 1996. Academic Press
  • [6] Le Cong T., Dagaut P. Experimental and detailed kinetic modeling of the oxidation of methane/ syngas mixtures and effect of carbon dioxide addition. Comb. Sci. Technol., 180, (2008), pp. 2046-2091
  • [7] Warnatz J., Maas U., Dibble R.W. Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, experiments, pollutant formation. 4rd Edition, Berlin 2006. Springer
  • [8] Peeters J., Mahnen G. Reaction mechanism and rate constants of elementary steps in methane oxygen flames. Fourteenth Symposium (Int.) on Combustion, (1973), pp. 133-146
  • [9] Westenberg A.A., Fristrom R.M. Methane-oxygen flame structure. IV. Chemical kinetic consideration. J. Phys. Chem., 65, (1961), pp. 591-601
  • [10] Glarborg P., Bentzen L.B. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energ. Fuel, 22, (2008), pp. 291-296
  • [11] Subramanian G., Pires da Cruz A., Bounaceur R., Vervisch L. Chemical impact of CO and H2 addition on the auto+ignition delay of homogeneous n+heptane- air mixtures. Comb. Sci. Technol., 179, (2007), pp. 1937-1962
  • [12] Abián M., Giménez-López J., Bilbao R., Alzueta M. U. Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling. Proceeding of the Combustion Institute, 33, (2011), pp. 317-323
  • [13] Gil I., Mocek P. Modeling combustion of the gas from oxygen underground coal gasification in the jet stirred reactor. Proceedings of 3rd International Conference on Contemporary Problems of Thermal Engineering. COPTE 2012. Gliwice 18 – 20 September 2012
  • [14] Stańczyk K., Kapusta K., Wiatowski M., Świądrowski J., Smoliński A., Rogut J., Kotyrba A. Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91, (2012), pp. 40-50
  • [15] Stańczyk K., Howaniec N., Smoliński A., Świądrowski J., Kapusta K., Wiatowski M., Grabowski J., Rogut J. Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel, 90, (2011), pp. 1953-1962
  • [16] Turányi T. Applications of sensitivity analysis to combustion chemistry. Reliab. Eng. Syst. Saf., 57, (1997), pp. 41-48
  • [17] Turányi T. Sensitivity analysis of complex kinetic system: tools and application. J. Math. Chem., 5, (1990), pp. 203-248
  • [18] Gradoń B. Rola podtlenku azotu w modelowaniu emisji NO w procesach spalania paliw gazowych w piecach wysokotemperaturowych. Zeszyty naukowe Politechniki Śląskiej nr 1568. Praca habilitacyjna. Gliwice 2003
  • [19] Gradoń B., Wacławiak K., Jastrząb Z. Investigation of the N2O reduction mechanism in the reburning process. Arch. Comb., 30, (2010), pp. 367-375
  • [20] Glarborg P., Alzueta M.U., Dam-Johansen K., Miller J.A. Kinetic modeling of hydrocarbon/ nitric oxide interactions in a flow reactor. Combust. Flame, 115, (1998), pp. 1-27
  • [21] Tomeczek J., Gradoń B. The role of nitrous oxide in the mechanism of thermal nitric oxide formation within flame temperature range. Combust. Sci. Technol., 125, (1997), pp. 159-180
  • [22] White C.M., Steeper R.R., Lutz A.E. The hydrogen – fueled internal combustion engine: a technical review. Int. J. Hydrogen Energ., 31, (2006), pp. 1292–1305
  • [23] Le Cong T., Dagaut P. Experimental and detailed modeling study of the effect of water vapor on the kinetics of combustion of hydrogen and natural gas, impact on NOx. Energ. Fuel, 23, (2009), pp. 725-734
  • [24] Mitani T. Ignition problems in scramjet testing. Combust. Flame, 101, (1995), pp. 347-359
  • [25] Wang B.L., Olivier H. Grönig H. Ignition of shock-heated H2-air-stream mixtures. Combust. Flame, 133, (2003), pp. 93-106
  • [26] Gil I. Analiza mechanizmu spalania gazu o składzie zbliżonym do składu gazu z procesu podziemnego zgazowania węgla – przegląd literatury. Prace Naukowe GIG (2011), 3, pp. 25 – 33
  • [27] Yossefi D., Ashcroft S.J., Hacohen J., Belmont M.R., Thorpe I. Combustion of methane and ethane with CO2 replacing N2 as a diluent. Modelling of combined effect of detail. Fuel, 74, (1995), pp. 1061-1071
  • [28] Anderlohr J.M. Pires da Cruz A., Bounaceur R., Battin-Leclerc F. Thermal and kinetic impact of CO, CO2 and H2O on the post oxidation of IC-engine exhaust gases. Combust. Sci. Technol., 180, (2010), pp. 39-59
  • [29] Skinner G.B., Lifshitz A., Scheller K., Burcat A. Kinetics of methane oxidation. J. Chem. Phys., 56, (1972), pp. 3853-3861
  • [30] Akrich R., Vovelle C., Delbourgo R. Flame profiles and combustion mechanisms of methanol-air flames under reduced pressure. Combust. Flame, 32, (1978), pp. 171-179
  • [31] Westenberg A.A., Fristrom R.M. H and O atom profiles measured by ESR in C2 hydrocarbon-O2 flames. Tenth Symposium (Int.) on Combustion, 1965, pp. 473-487
  • [32] Vandooren J., Peeters J., Van Tiggelen P.J. Rate constant of the elementary reaction of carbon monoxide with hydroxyl radical. Fifteenth Symposium (Int.) on Combustion, (1975), pp. 745-751
  • [33] Tabayashi K., Bauer S.H. The early stages of pyrolysis and oxidation of methane. Combust. Flame, 34, (1979), pp. 63-83
  • [34] Paczko G., Lefdal P.M., Peters N. Reduced reaction schemes for methane, methanol and propane flames. Twenty-first Symposium (Int.) on Combustion, (1986), pp. 739-748
  • [35] Tsuboi T., Hashimoto K. Shock tube on homogeneous thermal oxidation of methanol. Combust. Flame, 42, (1981), pp. 61-76
  • [36] Wilson W.E., O'Donovan J.T. Mass-spectrometric study of the reaction rate of OH with itself and with CO. J. Chem. Phys., 47, (1967), pp. 5455-5458
  • [37] Gardiner W.C., Mallard W.G., McFarland M., Morinaga K., Owen J.H., Rawlins W.T., Takeyama T., Walker B.F. Elementary reaction rates from post-induction-period profiles in shock-initiated combustion. Fourteenth Symposium (Int.) on Combustion, (1973), pp. 61-75
  • [38] Trilochan S., Sawyer R.T. CO reactions in the after flame region of ethylene/oxygen and ethane/oxygen flames. Thirteenth Symposium (Int.) on Combustion, (1971), pp. 403-415
  • [39] Chung K. Law. Combustion physics. New York 2006. Cambridge University Press
  • [40] Gil I. Modeling methane combustion in the CO2 diluted air. Proceedings of the 1-st International Congress on Thermodynamics, PUHiP POLI-GRAF-JAK, Poznań 2011, pp. 40-47
  • [41] Wantuck P.J., Olenborg R.C., Banghaum S.L., Winn K.R. CH3O+CO removal rate constant measurements over the 473-973 K temperature range. Chem. Phys. Lett., 138, issue 6, (1987), pp. 548-552
  • [42] Lissi E.A., Massiff G., Villa A.E. Oxidation of carbon monoxide by methoxy-radicals. J. Chem. Soc., Faraday Transaction I, 69, (1973), pp. 346-351
  • [43] Wang B., Hua Hou, Yueshu Gu. Ab Initio/density functional theory and multichannel RRKM calculations for the CH3O+CO reaction. J. Phys. Chem. A, 103, (1999), pp. 8021-8029
  • [44] Materiały pomocnicze do ćwiczeń I projektów z inżynierii chemicznej. Praca zbiorowa pod red. J. Bandrowskiego. Wydawnictwo Politechniki Śląskiej, Gliwice 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-afd87ce9-f73e-4ee9-a2d8-aec38c8a455c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.