Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Nr 56 | 155--165
Tytuł artykułu

Improved oscillation criteria for second order nonlinear delay difference equations with non-positive neutral term

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present some oscillation criteria for second order nonlinear delay difference equation with non-positive neutral term of the form ∆(an (∆zn )α )+qn f(xn-σ) )=0, n>no >0, where zn - xn - pn xn-r, and α is a ratio of odd positive integers. Examples are provided to illustrate the results. The results obtained in this paper improve and complement to some of the existing results.
Wydawca

Rocznik
Tom
Strony
155--165
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India , ethandapani@yahoo.co.in
autor
  • Department of Mathematics, Quaid-e-Millath Government College for Women, Chennai - 600 002, India , renurama68@gmail.com
autor
Bibliografia
  • [1] Agarwal R.P., Difference Equations and Inequalities, Second Edition, MarcelDekker, New York, 2000.
  • [2] Agarwal R.P., Bohner M., Grace S.R., O'Regan D., Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
  • [3] Agarwal R.P., Grace S.R., Thandapani E., Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comp. Modelling, 24(1996), 5-11.
  • [4] Gyori I., Ladas G., Oscillation Theory of Delay Differential Equations, Clarendon press, Oxford, 1991.
  • [5] Saker S.H., Oscillation Theory of Delay Differential and Difference Equations: Second and Third Order, Verlag dr Muler, Germany, 2010.
  • [6] Saker S.H., O'Regan D., New oscillation criteria for second order neutral functional dynamic equations via the generalized Riccati substitution, Commu. Nonlin. Sci. Numer. Simu., 16(2011), 423-434.
  • [7] Saker S.H., O'Regan D., New oscillation criteria for second order neutral functional dynamic equations on time scales via Riccati substitution, Hiroshima Math. J., 42(2012), 77-98.
  • [8] Sun Y.G., Saker S.H., Oscillation for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 163(2005), 909-918.
  • [9] Tang X.H., Liu Y., Oscillation for nonlinear delay difference equations, Tamkang J. Math., 32(2001), 275-280.
  • [10] Thandapani E., Sundaram P., Graef J.R., Spikes P.W., Asymptotic properties of solutions of nonlinear second order neutral delay difference equations, Dynamic Sys. Appl., 4(1995), 125-136.
  • [11] Thandapani E., Balasubramanian V., Graef J.R., Oscillation criteria for second order neutral difference equations with negative neutral term, Inter. J. Pure. Appl. Math., 87(2013), 283-292.
  • [12] Thandapani E., Liu Z., Arul R., Raja P.S., Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral terms, Appl.Math. E-Notes, 4(2004), 59-67.
  • [13] Thandapani E., Mahalingam K., Necessary and sufficient conditions for oscillation of second order neutral delay difference equations, Tamkang J. Math., 34(2) (2003), 137-145.
  • [14] Wang D.M., Xu Z.T., Oscillation of second order quasi-linear neutral delay difference equations, Acta Math. Appl. Sinica., 27(2011), 93-104.
  • [15] Zafer A., Dahiya R.S., Oscillation of a neutral difference equations, Appl. Math. Lett., 6(1993), 71-74.
  • [16] Zhou Z., Yu J., G. Lei, Oscillation for even order neutral difference equations, Korean J. Comput. Appl. Math., 7(2000), 601-610.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-afa31bcc-6209-4a66-b2ab-73cb1b3bd57f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.