Czasopismo
2011
|
Vol. 59, no 2
|
133--149
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We obtain new variants of weighted Gagliardo–Nirenberg interpolation inequalities in Orlicz spaces, as a consequence of weighted Hardy-type inequalities. The weights we consider need not be doubling.
Rocznik
Tom
Strony
133--149
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
- Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland, kalamajs@mimuw.edu.pl
autor
- Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland, kpp@mimuw.edu.pl
Bibliografia
- [1] H.-D. Alber, Materials with Memory. Initial-Boundary Value Problems for Constitutive Equations with Internal Variables, Lecture Notes in Math. 1682, Springer, Berlin, 1998.
- [2] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1977), 337–403.
- [3] H. H. Bang, A remark on the Kolmogorov–Stein inequality, J. Math. Anal. Appl. 203 (1996), 861–867.
- [4] S. Bloom and R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135–141.
- [5] D. W. Boyd, Indices for the Orlicz spaces, Pacific J. Math. 38 (1971), 315–323.
- [6] R. C. Brown and D. B. Hinton, Interpolation inequalities with power weights for functions of one variable, J. Math. Anal. Appl. 172 (1993), 233–242.
- [7] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984), 259–275.
- [8] S.-K. Chua, Sharp conditions for weighted Sobolev interpolation inequalities, Forum Math. 17 (2005), 461–478.
- [9] —, On weighted Sobolev interpolation inequalities, Proc. Amer. Math. Soc. 121 (1994), 441–449.
- [10] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in: Nonlinear Analysis, Function Spaces and Applications, Vol. 6 (Praha, 1998), Acad. Sci. Czech Rep., Praha, 1999, 50–92.
- [11] —, Hardy inequalities in Orlicz spaces, Trans. Amer. Math. Soc. 351 (1999), 2459–2478.
- [12] E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8 (1959), 24–51.
- [13] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205.
- [14] J.-P. Gossez and V. Mustonen, Variational inequalities in Orlicz–Sobolev spaces, Nonlinear Anal. 11 (1987), 379–392.
- [15] C. E. Gutierrez and R. L. Wheeden, Sobolev interpolation inequalities with weights, Trans. Amer. Math. Soc. 323 (1991), 263–281.
- [16] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.
- [17] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1952.
- [18] H. P. Heinig and Q. Lai, Weighted modular inequalities for Hardy-type operators on monotone functions, J. Inequal. Pure Appl. Math. 1 (2000), art. 10, 25 pp.
- [19] H. P. Heinig and L. Maligranda, Interpolation with weights in Orlicz spaces, Boll. Un. Mat. Ital. B (7) 8 (1994), 37–55.
- [20] A. Kałamajska and K. Pietruska-Pałuba, Logarithmic interpolation inequalities for derivatives, J. London Math. Soc. 70 (2004), 691–702.
- [21] —, —, Interpolation inequalities for derivatives in Orlicz spaces, Indiana Univ. Math. J. 55 (2006), 1767–1789.
- [22] A. Kałamajska and K. Pietruska-Pałuba, Interpolation inequalities for derivatives in logarithmic Orlicz spaces, Colloq. Math. 106 (2006), 93–107.
- [23] —, —, Gagliardo–Nirenberg inequalities in weighted Orlicz spaces, Studia Math. 173 (2006), 49–71.
- [24] —, —, Gagliardo–Nirenberg inequalities in weighted Orlicz spaces equipped with a not necessarily doubling measure, Bull. Belg. Math. Soc. 15 (2008), 217–235.
- [25] —, —, On a variant of Hardy inequality between weighted Orlicz spaces, Studia Math. 193 (2009), 1–28.
- [26] —, —, Weighted Hardy-type inequalities in Orlicz spaces, preprint, 2009.
- [27] A. N. Kolmogorov, On inequalities between upper bounds of consecutive derivatives of an arbitrary function defined on an infinite interval, Uchen. Zap. MGU, Mat. 30, (1939), 13–16 (in Russian).
- [28] M. A. Krasnosel’ski˘ı and Ya. B. Ruticki˘ı, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [29] A. Kufner, Weighted Sobolev Spaces, Wiley, Chichester, 1985.
- [30] A. Kufner, L. Maligranda and L. E. Persson, The Hardy Inequality. About its History and Some Related Results, Vydavatelský Servis, Plzen, 2007.
- [31] A. Kufner and A. Wannebo, An interpolation inequality involving Hölder norms, Georgian Math. J. 2 (1995), 603–612.
- [32] Q. Lai, Weighted modular inequalities for Hardy type operators, Proc. London Math. Soc. 79 (1999), 649–672.
- [33] E. Landau, Einige Ungleichungen für zweimal differentiierbare Funktionen, ibid. 13 (1914), 43–49.
- [34] V. G. Maz’ya, Sobolev Spaces, Springer, Berlin, 1985.
- [35] V. G. Maz’ya and T. Shaposhnikova, Pointwise interpolation inequalities for derivatives with best constants, Funktsional. Anal. i Prilozhen. 36 (2002), no. 1, 36–58 (in Russian); English transl.: Funct. Anal. Appl. 36 (2002), no. 1, 30–48.
- [36] —, —, Jacques Hadamard, A Universal Mathematician, Amer. Math. Soc. and London Math. Soc., London, 1998.
- [37] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 (1972), 31–38.
- [38] J. Necas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 305–326.
- [39] L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115–162.
- [40] R. Oinarov, On weighted norm inequalities with three weights, J. London Math. Soc 48 (1993), 103–116.
- [41] K. Oleszkiewicz and K. Pietruska-Pałuba, Orlicz-space Hardy and Landau–Kolmogorov inequalities for Gaussian measures, preprint, 2009.
- [42] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.
- [43] I. B. Simonenko, Interpolation and extrapolation of linear operators in Orlicz spaces Mat. Sb. (N.S.) 63 (105) (1964), 536–553 (in Russian).
- [44] P. Strzelecki, Gagliardo–Nirenberg inequalities with a BMO term, Bull. London Math. Soc. 38 (2006), 294–300.
- [45] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. Gagliardo–Nirenberg Inequality 149
- [46] H. Triebel, The Structure of Functions, Birkhäuser, Basel, 2001.
- [47] A. Wannebo, Hardy inequalities and imbeddings in domains generalizing C00α domains, Proc. Amer. Math. Soc. 122 (1994), 1181–1190.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-af9a969b-9508-4ae7-b5e7-6eba82e7e170