Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 5 | 268--276
Tytuł artykułu

Derivation of Material Constants for Experimental SKR-788 Silicone Samples via Simulation Modeling and Laboratory Testing

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of various machines and equipment containing parts or assemblies made of hyperelastic materials (e.g., rubber, silicone) is difficult because of the intricacies involved in the description of their mechanical properties. This is especially seen in calculations using simulation modeling. The behavior of hyperelastic materials is described by utilizing the results of research conducted with specialized equipment. This allows for the most accurate determination of their mechanical properties. Hyperelastic materials are widely used across diverse industries, encompassing mechanical engineering, the chemical and petrochemical sectors, cement production, and beyond. To determine the mechanical characteristics of SKR-788 silicone, batches of test samples were prepared, varying solely in the ratio of the base to the catalyst. Laboratory testing of silicone samples was performed on an Instron 4500 device, and data such as loads, displacements, and deformations were obtained. In order to verify the results of the tests against the results of simulation modeling in Ansys software, a model of the experimental sample was built. The obtained results of uniaxial tensile testing of the experimental sample were taken into account during the description of the material in the Mooney–Rivlin model. The calculation scheme for the test sample during simulation modeling is similar to the one used during its laboratory testing. Applying the load to the test sample during the simulation proceeded incrementally based on time. As a result of the work, the constants of the SKR-788 silicone material for the three-parameter Mooney–Rivlin model were defined (C10 = −0.10335 МРа, C01 = 0.57534 МРа, and C11 = 0.093309 МРа). As a result of simulation modeling of the experimental silicone sample, the values of its displacements and stresses were obtained. Upon comparing the stress values derived from the results of laboratory testing on the Instron 4500 equipment with those obtained from simulation modeling, a discrepancy of up to 7% was identified. For the first time, the characteristics of the SKR-788 silicone material have been established and verified. This will facilitate the design and research of various equipment and machine components made from hyperelastic materials.
Wydawca

Rocznik
Strony
268--276
Opis fizyczny
Bibliogr. 41 poz., fig., tab.
Twórcy
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska st., 76019, Ukraine, myhajlyukv@ukr.net
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska st., 76019, Ukraine, kyevstakhiy@nung.edu.ua
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska st., 76019, Ukraine, yuramosora@gmail.com
  • Department of Oil and Gas Field Machinery and Equipment, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska st., 76019, Ukraine, deynega2004@ukr.net
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Kraków, Poland, ddamian@agh.edu.pl
  • Department of Metal Forming and Metallurgical Engineering, Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, 30-059 Kraków, Polan, sbajda@agh.edu.pl
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059 Kraków, Poland, bembenek@agh.edu.pl
Bibliografia
  • 1. Khaniki H.B., Ghayesh M.H., Chin R., Amabili M. A review on the nonlinear dynamics of hyperelastic structures. Nonlinear Dynamics 2022; 110(2): 963–994.
  • 2. Falope F.O., Pelliciari M., Lanzoni L., Tarantino A.M. Snap-through and Eulerian buckling of the bi-stable von Mises truss in nonlinear elasticity: A theoretical, numerical and experimental investiga- tion. International Journal of Non-Linear Mechanics 2021; 134: 103739.
  • 3. Bembenek M., Kowalski Ł., Pawlik J., Bajda S. Research on the influence of the load direction and the cross-section shape on the Young’s modulus of elements produced by the fused deposition modeling method. Journal of Materials Engineering and Performance 31(10): 7906–7912
  • 4. Bembenek M., Kowalski Ł., Kosoń-Schab A. Research on the influence of processing parameters on the specific tensile strength of FDM additive manufactured PET- G and PLA materials. Polymers 2022; 14(12): 2446.
  • 5. Zhang G., Khandelwal K. Design of dissipative multimaterial viscoelastic-hyperelastic systems atfinite strains via topology optimization. International Journal for Numerical Methods in Engineering 2019; 119(11): 1037–1068.
  • 6. Arbind A., Reddy J.N., R. Srinivasa A. A general higher-order shell theory for compressible isotropic hyperelastic materials using orthonormal moving frame. International Journal for Numerical Methods in Engineering 2021; 122(1): 235–269.
  • 7. Junker P., Balzani D. A new variational approach for the thermodynamic topology optimization of hyperelastic structures. Computational Mechanics 2021; 67(2): 455–480.
  • 8. Ye J.Y., Zhang L.W., Reddy J.N. Large strained fracture of nearly incompressible hyperelastic materials: Enhanced assumed strain methods and energy de-composition. Journal of the Mechanics and Physics of Solids 139: 103939.
  • 9. Fernández M., Jamshidian M., Böhlke T., Kersting K., Weeger O. Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials. Computational Mechanics 2021; 67(2): 653–677.
  • 10. Zhang X.S., Chi H., Paulino G.H. Adaptive multimaterial topology optimization with hyperelastic materials under large deformations: A virtual element approach. Computer Methods in Applied Mechanics and Engineering 2020; 370: 112976.
  • 11. Jamshidian M., Boddeti N., Rosen D., Weeger O. Multiscale modelling of soft lattice metamaterials: Micromechanical nonlinear buckling analysis, experimental verification, and macroscale constitutive behaviour. International Journal of Mechanical Sciences 2020; 188: 105956.
  • 12. Cholleti E.R., Stringer J., Kelly P., Bowen C., Aw K. The effect of barium titanate ceramic loading on the stress relaxation behavior of barium titanate-silicone elastomer composites. Polymer Engineer- ing & Science 2020; 60(12): 3086–3094.
  • 13. Valizadeh I., Al Aboud A., Dörsam E., Weeger O. Tailoring of functionally graded hyperelastic ma- terials via grayscale mask stereolithography 3D printing. Additive Manufacturing 2021; 47: 102108.
  • 14. Zhan L., Wang S., Qu S., Steinmann P., Xiao R. A new micro–macro transition for hyperelastic materials. Journal of the Mechanics and Physics of Solids2023; 171: 105156.
  • 15. Wang H., Cao S., Luo X., Zhang Z., Wu Q. Experimental study on the effect of rubber isolator on the vibration of piston pump. In: Proceedings of the 6th International Conference on Control, Mechatronics and Automation [Internet] New York, NY, USA: Association for Computing Machinery; 2018 [cited 2024 Apr 25]. 111–115. (IC- CMA 2018). Available from: https://dl.acm.org/ doi/10.1145/3284516.3284519
  • 16. Dorokhov M.A., Kostryba I.V. Computer modeling of stress-strain state seals well packer. Oil and Gas Engineering 2016; 1: 103–110.
  • 17. Mei Y., Stover B., Afsar Kazerooni N., Srinivasa A., Hajhashemkhani M., Hematiyan M.R., Goenezen S. A comparative study of two constitutive models within an inverse approach to determine the spatial stiffness distribution in soft materials. International Journal of Mechanical Sciences 2018; 140: 446–454.
  • 18. Chung I., Im S., Cho M. A neural network constitutive model for hyperelasticity based on molecular dynamics simulations. International Journal for Numerical Methods in Engineering 2020; 122.
  • 19. López-Campos J., Segade A., Fernández J., Casarejos E., Vilán J. Behavior characterization of viscohyperelastic models for rubber-like materials using genetic algorithms. Applied Mathematical Modelling 2019; 66: 241–255.
  • 20. Shariyat M., Khosravi M., Yazdani Ariatapeh M., Najafipour M. Nonlinear stress and deformation analysis of pressurized thick-walled hyperelastic cylinders with experimental verifications and material identifications. International Journal of Pressure Vessels and Piping 2020; 188: 104211.
  • 21. Gajewski M., Szczerba R., Jemioło S. Modelling of elastomeric bearings with application of Yeoh hyperelastic material model. Procedia Engineering 2015; 111: 220–227.
  • 22. Korba A.G., Barkey M.E. New model for hyperelastic materials behavior with an application on natural rubber. In Los Angeles, California, USA: American Society of Mechanical Engineers Digital Collection; 2017 [cited 2024 Apr 24]. Available from: https://dx.doi.org/10.1115/MSEC2017-2792
  • 23. Bhat S.K., Power-Yeoh A.K. A yeoh-type hyperelastic model with invariant I2 for rubber-like materials. Engineering Proceedings 2023; 59(1): 104.
  • 24. Zhao Z., Mu X., Du F. Modeling and verification of a new hyperelastic model for rubber-like materials. Mathematical Problems in Engineering 2019; 2019(1): 2832059.
  • 25. Matli S.R., Rubin E., Banks-Sills L. Mixed mode failure curve for an interface crack between single crystal silicon and silicone rubber. Theoretical and Applied Fracture Mechanics 2022; 122: 103640.
  • 26. Mykhailiuk V.V., Liakh M.M., Protsiuk V.R., Deineha R.O., Vytrykhovskyi Ye.A., Stetsiuk R.B. Develpment of the adjustable Laval nozzle design. Oil and Gas Power Engineering 2022; 2(38): 85–92.
  • 27. Mykhailiuk V.V., Chudyk І.І., Mosora Y. On the possibility of using simulation modeling for research and design of universal preventer seals. Scientific Bulletin of Ivano-Frankivsk National Technical University of Oil and Gas 2021; 1(50): 53–61.
  • 28. Schendel M.J., Popelar C.F., Martin D. Numerical methods for design and evaluation of prosthetic heart valves. In: Iaizzo PA, Iles TL, Griselli M, St. Louis JD, editors. Heart Valves: From Design to Clinical Implantation [Internet] Cham: Springer International Publishing; 2023 [cited 2024 Apr 26]. 487–508. Available from: https://doi.org/10.1007/978-3-031-25541-0_17
  • 29. Chen L., Yang C., Wang H., Branson D.T., Dai J.S., Kang R. Design and modeling of a soft robotic surface with hyperelastic material. Mechanism and Machine Theory 2018; 130: 109–122.
  • 30. Vignali E., Gasparotti E., Capellini K., Fanni B.M., Landini L., Positano V., Celi S. Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations. The International Journal of Robotics Research 2021; 40(1): 224–235.
  • 31. Yap H.K., Lim J.H., Nasrallah F., Yeow C.H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Frontiers in Neuroscience [Internet] 2017; 11. Available from: https://www.frontiersin.org/journals/ neuroscience/articles/10.3389/fnins.2017.00547/full
  • 32. Bertini L., Carmignani L., Frendo F. Analytical model for the power losses in rubber V-belt continuously variable transmission (CVT). Mechanism and Machine Theory 2014; 78: 289–306.
  • 33. Kolosov D., Dolgov O., Bilous O., Kolosov A. The stress-strain state of the belt in the operating changes of the burdening conveyor parameters. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining 2015; 585: 590.
  • 34. SKR-788—Silicone for molds [Internet]. 2024 [cited 2024 Apr 25]. Available from: https://silikoni. com.ua/skr-788-silikon-dlya-form/ (in Ukrainian)
  • 35. Wax separator for molds (paste)—40 grams [Internet]. [cited 2024 Apr 25]. Available from: https:// silikoni.com.ua/release-wax-voskova-rozdilova- pasta-40-hram/ (in Ukrainian)
  • 36. Mykhailiuk V., Zasadzień M., Liakh M., Deineha R., Mosora Y., Faflei O. Analysis of the possibility of modeling gas separators using computational fluid dynamics. Management Systems in Production Engineering 2024; 32: 80–86.
  • 37. Grydzhuk J., Chudyk I., Slabyi O., Mosora Y., Kovbaniuk M., Krynke M. Mathematical modeling of the stress-strain state of the annular preventer seal using the theory of reinforced shells. Production Engineering Archives 2022; 28(4): 375–380.
  • 38. Vytyaz O., Ivasiv O., Rachkevych R., Deynega R. Research on the influence of the repair sleeves on the strength and the stress-strain state of the pipeline section. Nafta-Gaz 2022; 78(10): 733–739. (in Polish)
  • 39. Mooney M. A theory of large elastic deformation. Journal of Applied Physics 1940; 11(9): 582–592.
  • 40. Rivlin R.S. Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences 1949; 242: 173–195.
  • 41. WELSIM. Mooney-Rivlin hyperelastic model for nonlinear finite element analysis [Internet]. Medium. 2020 [cited 2024 Apr 26]. Available from: https://getwelsim.medium.com/mooney-rivlin- hyperelastic-model-for-nonlinear-finite-element- analysis-b0a9a0459e98
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-af8f33ac-04b0-42b6-8a09-d321ba656928
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.