Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2019 | Vol. 67, no. 6 | 1551--1561
Tytuł artykułu

Reflected wave least squares reverse time migration with angle illumination compensation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-quality seismic data imaging plays an important role in the lithological interpretation of subsurface structures. However, high-quality imaging remains a challenging task. Based on the linear inversion theory of reflected wave equations, this paper proposes reflected wave least squares reverse time migration with angle illumination compensation to better balance the amplitude of seismic imaging. We use the reflected wave migration equation to unify forward and backward propagation, which helps to obtain an image with correct phase and symmetric waveform. Under the assumption that the spectrum of seismic wavefield remains unchanged, the Poynting vector method is used to efficiently calculate the propagation direction of seismic waveform and seismic illumination in the angle domain. During iteration, angle-domain illumination is used as a preconditioner to compensate for the amplitude of the iterated gradient terms based on the angle value. In this manner, we can enhance the imaging energy of steeply inclined structures. To improve the stability of linear inversion, the spatial derivative of the image is used as a regularized constraint term. Numerical tests show that the proposed method can suppress imaging noise as well as improve resolution and amplitude fidelity of the images. Furthermore, the inversed result can be used to estimate underground reflectivity, which is important for the further development of seismic inversion technology.
Wydawca

Czasopismo
Rocznik
Strony
1551--1561
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China, zhouhuamin0926@163.com
autor
  • Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China
autor
  • School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
autor
  • IGPP, University of California, Santa Cruz, CA 95064, USA, rwu@ucsc.edu
  • Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China
Bibliografia
  • 1. Aldawood A, Alkhalifah T, Hoteit I, Zuberi M, Turkiyyah G (2014) The possibilities of linearized inversion of internally scattered seismic data. In: Proceedings of the 2014 SEG annual meeting, Society of Exploration Geophysicists, pp 3737–3741
  • 2. Berkhout A (1997) Pushing the limits of seismic imaging, part I: prestack migration in terms of double dynamic focusing. Geophysics 62:937–953
  • 3. Berkhout A (2012) Seismic migration: imaging of acoustic energy by wave field extrapolation, vol 12. Elsevier, Delft
  • 4. Birgin EG, Maxtinez JM, Raydan M (2000) Nonmonotone projected gradient methods for convex sets. SIAM J Optim 10:1196–1211
  • 5. Bleistein N, Cohen JK, Stockwell JW Jr (2001) Mathematics of multidimensional seismic imaging, migration, and inversion. Springer, New York, pp 25–78
  • 6. Chen SC, Zhou HM (2016) Re-exploration to migration of seismic data. Chin J Geophys 59:643–654 (in Chinese)
  • 7. Chen SC, Zhou HM (2018) Least squares migration of seismic data with reflection wave equation. Chin J Geophys 61:1413–1420 (in Chinese)
  • 8. Claerbout JF (1992) Earth soundings analysis: processing versus inversion, vol 6. Blackwell Scientific Publications, Cambridge
  • 9. Duquet B (1996) Improving seismic imaging in complex geologic structures. PhD thesis, University of Paris XIII, France
  • 10. Fomel S, Berryman JG, Clapp RG, Clapp MP (2002) Iterative resolution estimation in least-squares Kirchhoff migration. Geophys Prospect 50:577–588
  • 11. Herrmann FJ, Li X (2012) Efficient least-squares imaging with sparsity promotion and compressive sensing. Geophys Prospect 60:696–712
  • 12. Kaplan ST, Routh PS, Sacchi MD (2010) Derivation of forward and adjoint operators for least-squares shot-profile split-step migration. Geophysics 75:S225–S235
  • 13. Kühl H, Sacchi MD (2003) Least-squares wave-equation migration for AVP/AVA inversion. Geophysics 68:262–273
  • 14. Luo J, Wu RS (2018) Velocity and density reconstruction based on scattering angle separation. Pure Appl Geophys 175:4371–4387
  • 15. Luo J, Xie XB (2017) Frequency-domain full waveform inversion with an angle-domain wavenumber filter. J Appl Geophys 141:107–118
  • 16. Plessix RE, Mulder W (2004) Frequency-domain finite-difference amplitude-preserving migration. Geophys J Int 157:975–987
  • 17. Qu Y, Li J, Huang J et al (2017) Elastic least-squares reverse time migration with velocities and density perturbation. Geophys J Int 212:1033–1056
  • 18. Tang Y (2009) Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian. Geophysics 74:WCA95–WCA107
  • 19. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266
  • 20. Wang J, Sacchi MD (2006) High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints. Geophysics 72:S11–S18
  • 21. Wu J, Bai M (2018) Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration. Comput Geosci 114:11–21
  • 22. Wu RS, Chen L, Xie XB (2003) Directional illumination and acquisition dip-response. In: Proceedings of the 65th annual conference and exhibition, EAGE, Extended Abstracts, P147
  • 23. Wu D, Yao G, Cao J et al (2016) Least-squares RTM with L1 norm regularization. J Geophys Eng 13:666–673
  • 24. Xie XB, Wu RS (2002) Extracting angle related image from migrated wavefield: expanded abstracts. In: Proceedings of the SEG 72nd annual meeting, pp 1360–1363
  • 25. Xie XB, Yang H (2008) A full-wave equation based seismic illumination analysis method. In: Proceedings of the 70th EAGE conference and exhibition incorporating SPE EUROPEC 2008
  • 26. Xie XB, Wu RS, Huang L (2005) Seismic resolution and illumination: a wave-equation-based analysis. In: Proceedings of the 2005 SEG annual meeting, Society of Exploration Geophysicists, pp 1862–1865
  • 27. Xie XB, Jin S, Wu RS (2006) Wave-equation-based seismic illumination analysis. Geophysics 71:S169–S177
  • 28. Xue Z, Chen Y, Fomel S, Sun J (2014) Imaging incomplete data and simultaneous-source data using least-squares reverse-time migration with shaping regularization. In: Proceedings of the 2014 SEG annual meeting, Society of Exploration Geophysicists, pp 3991–3996
  • 29. Yan Z, Xie X-B (2016) Full-wave seismic illumination and resolution analyses: a Poynting vector based method. Geophysics 81:S447–S458
  • 30. Yan R, Guan H, Xie XB (2014) Acquisition aperture correction in the angle domain toward true-reflection reverse time migration. Geophysics 79:S241–S250
  • 31. Yao G, Jakubowicz H (2016) Least-squares reverse-time migration in a matrix-based formulation. Geophys Prospect 64:611–621
  • 32. Yao G, Wu D (2015) Least-squares reverse-time migration for reflectivity imaging. Sci China Earth Sci 58:1982–1992
  • 33. Yao G, da Silva NV, Wu D (2018) Forward modelling formulas for least-squares reverse-time migration. Explor Geophys 49:506–518
  • 34. Yoon K, Guo M, Cai J, Wang B (2011) 3D RTM angle gathers from source wave propagation direction and dip of reflector. In: 81st annual international meeting, SEG, Expanded Abstracts, pp 3136–3140
  • 35. Yu J, Hu J, Schuster GT (2006) Prestack migration deconvolution. Geophysics 71:S53–S62
  • 36. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164
  • 37. Zhang Y, Duan L, Xie Y (2014a) A stable and practical implementation of least-squares reverse time migration. Geophysics 80:V23–V31
  • 38. Zhang Y, Ratcliffe A, Roberts G, Duan L (2014b) Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion. Geophysics 79:S271–S283
  • 39. Zhou HM, Chen SC, Ren HR (2014) One-way wave equation least-squares migration based on illumination compensation. Chin J Geophys 57:2644–2655 (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-af79cedd-1658-4935-8e54-8d80e3363bbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.