Warianty tytułu
Języki publikacji
Abstrakty
Shallot is one of several horticultural products exported from Thailand to various countries. Despite an increase in shallot prices over the years, farmers face challenges in price forecasting due to fluctuations and other relevant factors. While different forecasting techniques exist in the literature, there is no universal approach due to varying problems and datasets. This study focuses on predicting shallot prices in Northern Thailand from January 2014 to December 2020. Traditional and machine learning models, including ARIMA, Holt-Winters, LSTM, and ARIMA-LSTM hybrids, are proposed. The LSTM model considers temperature and rainfall as influencing factors. Evaluation metrics include RMSE, MAE, and MAPE. Results indicate that the ARIMA-LSTM hybrid model performs best, with RMSE, MAE, and MAPE values of 10.275 Baht, 8.512 Baht, and 13.618%, respectively. Implementing this hybrid model can provide shallot farmers with advanced price information for informed decision-making regarding cultivation expansion and production management.
Czasopismo
Rocznik
Tom
Strony
348-355
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Su Thep, Mueang, Chiang Mai, 50200, Thailand, chompoonoot.kasemset@cmu.ac.th
autor
- Graduate Program in Data Science, Chiang Mai University, 239 Su Thep, Mueang, Chiang Mai, 50200, Thailand, kanokrot_p@cmu.ac.th
autor
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, 239 Su Thep, Mueang, Chiang Mai, 50200, Thailand, takron.op@cmu.ac.th
Bibliografia
- 1. Banerjee, T., Sinha, S., Choudhury, P., 2022. Long term and short term forecasting of horticultural produce based on the LSTM network model, Applied Intelligence, 34(6), 9117-9147, DOI: 10.1007/s10489-021-02845- x
- 2. Bhandari, H.N., Rimal, B., Pokhrel, N.R., Rimal, R., Dahal, K.R., Khatri, R.K., 2022. Predicting stock market index using LSTM, Machine Learning with Applications, 9, DOI: 10.1016/j.mlwa.2022.100320.
- 3. Schlenker, Wolfram, Michael J. Roberts. 2009. Nonlinear temperature effects indicate severe damages to US crop yields under climate change, the National Academy of sciences, 106(37), 15594-15598, DOI: 10.1073/pnas.0906865106.
- 4. Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., Sun, Z., 2021. Well production forecasting based on ARIMA-LSTM model considering manual operations, Energy, 220(C), DOI: 10.1016/j.energy.2020.119708
- 5. Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory, Neural computation, 9(8), 1735-1780, DOI: 10.1162/neco.1997.9.8.173
- 6. Jaiswal, R., Jha, G.K., Kumar, R.R., Choudhary, K., 2022. Deep long short term memory based model for agricultural price forecasting, Neural Computing and Applications, 34(8), 9117-9147, DOI: 10.1007/s00521- 021-06621-3
- 7. Laosiritaworn, W.S., 2011. Supply chain forecasting model using computational intelligence techniques, Chiang Mai University Journal of Natural Sciences, 10(1), 19-28. Available: https://www.thaiscience.info/ journals/Article/CMUJ/10887604.pdf [Accessed: 19 July 2022].
- 8. Lewis, C.D., 1982. Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Boston: Butterworth Scientific, London, UK.
- 9. Mohanty, M.K., Thakurta, P.K.G., Kar, S., 2023. Agricultural commodity price prediction model: a machine learning framework, Neural Computing and Applications, 35, 15109–15128, DOI: 10.1007/s00521-023- 08528-7
- 10. Ning, Y., Kazemi, H., Tahmasebi, P., 2022. A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet, Computers & Geosciences, 164, DOI: 10.1016/j.cageo.2022.105126
- 11. Office of Agricultural Economics, 2020. Agricultural Price Index June 2020, (in Thai). Available: http://www.oae.go.th/ [Accessed: 19 July 2022].
- 12.Palangkaset, 2019. Step-By-Step for Shallot Cultivation and Harvest, (in Thai). Available: https://www.palangkaset.com/ [Accessed: 30 August 2022].
- 13. Phuruan, K., Kasemset C., 2022. Shallot Price Forecasting Model Using Hybrid ARIMA-LSTM Model, Data Science and Engineering (DSE) Record, 3(1).
- 14. Poornima, S., Pushpalatha, M., 2019. Drought prediction based on SPI and SPEI with varying timescales using LSTM recurrent neural network, Soft Computing, 23(18), 8399-8412, DOI: 10.1007/s00500-019-04120-1.
- 15. Purohit, S.K., Panigrahi, S., Sethy, P.K., Behera, S.K., 2021. Time series forecasting of price of agricultural products using hybrid methods, Applied Artificial Intelligence, 35(15), 1388-1406, DOI: 10.1080/ 08839514.2021.1981659
- 16. Sabu, K.M., Kumar, T.M., 2020. Predictive analytics in Agriculture: Forecasting prices of Arecanuts in Kerala, Procedia Computer Science, 171, 699-708, DOI: 10.1016/j.procs.2020.04.076.
- 17. Thiruvengadam, S., Tan, J. S., Miller, K., 2020. Time Series, Hidden Variables and Spatio-Temporal Ordinality Networks, Advances in Applied Clifford Algebras, 30(3), 1-98, DOI: 10.1007/s00006-020-01061-z.
- 18. Varun, R., Neema, N., Sahana, H. P., Sathvik, A., Muddasir, M, 2019. Agriculture commodity price forecasting using Ml techniques, International Journal of Innovative Technology and Exploring Engineering, 9(2S), 729-732, DOI: 10.35940/ijitee.B1226.1292S19
- 19. Winters, P.R., 1960. Forecasting sales by exponentially weighted moving averages, Management science, 6(9), 324-342, DOI: 10.1287/mnsc. 6.3.324
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-af6cb63f-9744-4117-a585-97dc395d348c