Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 65, nr 5 | 407--428
Tytuł artykułu

Gradient-enhanced damage model for large deformations of elastic-plastic materials

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Solid Mechanics Conference (38 ; 27-31.08.2012 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper deals with the development of a family of gradient-enhanced elasticity-damage-plasticity models for the simulation of failure in metallic and composite materials. The model incorporates finite deformations and is developed with the assumption of isotropy and isothermal conditions. The gradient enhancement applied to the damage part of the model aims at removing pathological sensitivity to the finite element discretization which can occur due to material softening. The attention is focused on the algorithmic aspects and on the implementation of the model using AceGen tool. The numerical verification tests of the described model are performed using the Mathematica-based package AceFEM. Particularly, uniaxial tension test for a bar with a variable cross-section and tension of a perforated plate are examined.
Wydawca

Rocznik
Strony
407--428
Opis fizyczny
Bibliogr. 16 poz., rys. kolor., wykr.
Twórcy
autor
  • Institute for Computational Civil Engineering Cracow University of Technology Warszawska 24 31-155 Kraków, Poland, bwcislo@L5.pk.edu.pl
autor
  • Institute for Computational Civil Engineering Cracow University of Technology Warszawska 24 31-155 Kraków, Poland , jpamin@L5.pk.edu.pl
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warszawa, Poland, kkowalcz@ippt.pan.pl
Bibliografia
  • 1. H. Li, N. Chandra, Analysis of crack growth and crack tip plasticity in ductile materials using cohesive zone models , Int. J. Plasticity, 19, 849–882, 2003.
  • 2. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient-enhanced damage for quasi-brittle materials, Int. J. Numer. Meth. Engng., 39, 3391–3403, 1996.
  • 3. P. Steinmann, Formulation and computation of geometrically non-linear gradient damage, Int. J. Numer. Meth. Engng., 46, 5, 757–779, 1999.
  • 4. M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework , Comput. Methods Appl. Mech. Engrg., 193, 3377–3401, 2004.
  • 5. P.M.A. Areias, J.M.A. César de Sá, C.A. Conceição, A gradient model for finite strain elastoplasticity coupled with damage, Finite Elements in Analysis and Design, 39, 13, 1191–1235, 2003.
  • 6. J. Korelc, Automation of primal and sensitivity analysis of transient coupled problems, Computational Mechanics, 44, 631–649, 2009.
  • 7. F. Auricchio, R. L. Taylor, A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes , Int. J. Plasticity, 15, 1359–1378, 1999.
  • 8. T. Żebro, K. Kowalczyk-Gajewska, J. Pamin, A geometrically nonlinear model of scalar damage coupled to plasticity Technical Transactions, 20, 251–262, 2008; Series Environmental Enginnering 3-Ś/2008.
  • 9. J.C. Simo, T.J.R. Hughes, Computational Inelasticity. Interdisciplinary Applied Mathematics, Vol. 7, Springer, New York, 1998.
  • 10. J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Comput. Methods Appl. Mech. Engrg., 51, 31–49, 1984.
  • 11. T. Belytschko, D. Lasry, A study of localization limiters for strain-softening in statics and dynamics, Comput. & Struct., 33, 707–715, 1989.
  • 12. P. Wriggers, Nonlinear Finite Element Methods, Springer, Berlin, Heidelberg, 2008.
  • 13. J.C. Simo, M.S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Engng., 29, 1595–1638, 1990.
  • 14. T.J.R. Hughes, Generalization of selective integration procedures to anisotropic and non-linear media , Int. J. Numer. Meth. Engng., 15, 1413–1418, 1980.
  • 15. E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity. Theory and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2008.
  • 16. J. Mazars, G. Pijaudier-Cabot, Continuum damage theory – application to concrete, ASCE J. Eng. Mech., 115, 345–365, 1989.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-af6b3b06-8593-4eb7-99b4-d557bab38b61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.