Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 45, No. 3 | 388--404
Tytuł artykułu

Annual production to biomass (P/B) ratios of pelagic ciliates in different temperate waters

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In aquatic environments, ciliates integrate the energy flowing through bacteria, smaller protozoa, and the prevailing fraction of algae and are further grazed upon by metazooplankton. Ciliates are incorporated into budgets and models describing ecosystem functioning. However, data for the parameterization and validation of models remain insufficient. In this study, annual production to biomass (P/B) ratios of pelagic ciliates were estimated in four lakes of different trophic status and at two sites located in the coastal zone of the Baltic Sea. All study sites were located in the temperate zone. The calculations were based on bulk data reflecting seasonal changes in ciliate production, which was estimated using an allometric equation. The annual ciliate P/B ratio for surface waters was 308 ± 81 yr-1 (mean ± standard deviation). There was no statistically significant relationship between the mean annual ciliate biomass in particular water bodies and the annual P/B ratio. In the near-bottom waters, the annual P/B ratio was 78 ± 39 yr-1. Because of the possible food limitation of ciliate growth and reconstructions of the community due to changes in environmental conditions, the ciliate P/B ratio applied in models of temperate waters should range from 50% to 100% of the P/B ratios estimated in this study.
Słowa kluczowe
Wydawca

Rocznik
Strony
388--404
Opis fizyczny
Bibliogr. 115 poz., tab., wykr.
Twórcy
autor
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland, krychert@wp.pl
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
autor
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Department of Ecology, Institute of Biology and Environmental Protection, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
Bibliografia
  • [1]. Aberle, N., Lengfellner, K. & Sommer, U. (2007). Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150: 668-681. DOI: 10.1007/s00442-006-0540-y.
  • [2]. Azam, F., Fenchel, T., Field, J.D., Gray, J.S., Meyer-Reil, L.A. et al. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263.
  • [3]. Baretta-Bekker, J.G., Baretta, J.W. & Rasmussen, E.K. (1995). The microbial food web in the European Regional Seas Ecosystem Model. Neth. J. Sea Res. 33: 363-379.
  • [4]. Beaver, J.R. & Crisman, T.L. (1982). The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253.
  • [5]. Buitenhuis, E.T., Rivkin, R.B., Sailley, S. & Le Quéré, C. (2010). Biogeochemical fluxes through microzooplankton. Global Biogeochem. Cy. 24, GB4015. DOI: 10.1029/2009GB003601.
  • [6]. Calbet, A. (2008). The trophic roles of microzooplankton in marine systems. J. Plankton Res. 65: 325-331.
  • [7]. Calbet, A. & Landry, M.R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49: 51-57.
  • [8]. Calbet, A. & Saiz, E. (2005). The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38: 157-167. DOI:10.3354/ ame038157.
  • [9]. Carrias, J.-F., Thouvenot, A., Amblard, C. & Sime-Ngando, T. (2001). Dynamics and growth estimates of planktonic protists during early spring in Lake Pavin, France. Aquat. Microb. Ecol. 24: 163-174.
  • [10]. Carrick, H.J., Fahnenstiel, G.L. & Taylor, W.D. (1992). Growth and production of planktonic protozoa in Lake Michigan: in situ versus in vivo comparison and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235.
  • [11]. Carrick, H. (2005). An under-appreciated component of biodiversity in plankton communities: the role of protozoa in Lake Michigan (a case study). Hydrobiologia 551: 17-32. DOI: 10.1007/s10750-005-4447-0.
  • [12]. Choi, J.W. & Stoecker, D.K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. Environ. Microbiol. 55: 1761-1765.
  • [13]. Chróst, R.J., Adamczewski, T., Kalinowska, K. & Skowrońska, A. (2009). Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status. J. Microbiol. Biotechnol. 19: 858-868. DOI: 10.4014/jmb.0812.651.
  • [14]. Crawford, D.W. (1989). Mesodinium rubrum: the phytoplankter that wasn't. Mar. Ecol. Prog. Ser. 58: 161-174.
  • [15]. Czychewicz, N. & Rychert, K. (2011). Seasonal changes in ciliate biomass and composition of the ciliate community in oligo-mesotrophic Lake Jasne (Iława Lake District, Poland). Limnol. Rev. 11: 3-5. DOI: 10.2478/v10194-011-0021-5.
  • [16]. Davidson, K. (2014). The challenges of incorporating realistic simulations of marine protists in biogeochemically based mathematical models. Acta Protozool. 53: 129-138. DOI: 10.4467/16890027AP.14.012.1449.
  • [17]. Edler, L. (1979). Recommendations for methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Malmö: BMB Publication.
  • [18]. Ejsmont-Karabin, J. & Hutorowicz, A. (2011). Spatial distribution of rotifers (Rotifera) in monospecies beds of invasive Vallisneria spiralis L. in heated lakes. Oceanol. Hydrobiol. Stud. 40: 71-76. DOI: 10.2478/s13545-011-0043-2.
  • [19]. Fenchel, T. (1974). Intrinsic rate of natural increase: the relation with body size. Oecologia (Berl.) 14: 317-326.
  • [20]. Fenchel, T. (2005). Respiration in aquatic protists. In P.A. del Giorgio & P.J.leB. Williams (Eds.), Respiration in aquatic ecosystems (pp. 47-56). New York: Oxford University Press.
  • [21]. Fenchel, T. (2014). Protozoa and oxygen. Acta Protozool. 53: 3-12. DOI: 10.4467/16890027AP.13.0020.1117.
  • [22]. Fenchel, T. & Finlay, B.J. (1990). Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Ecol. 74: 269-276.
  • [23]. Fenchel, T. & Finlay, B.J. (1995). Ecology and evolution in anoxic worlds. New York: Oxford University Press.
  • [24]. Finlay, B.J. (1977). The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia (Berl.) 30: 75-81.
  • [25]. Foissner, W. & Berger, H. (1996). A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicatiors in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biol. 35: 375-482.
  • [26]. Franzé, G. & Lavrentyev, PJ. (2014). Microzooplankton growth rates examined across a temperature gradient in the Barents Sea. PLoS ONE 9(1): e86429. DOI: 10.1371/journal. pone.0086429.
  • [27]. Franzé, G. & Modigh, M. (2013). Experimental evidence for internal predation in microzooplankton communities. Mar. Biol. 160: 3103-3112. DOI: 10.1007/s00227-013-2298-1.
  • [28]. Gaedke, U. & Straile, D. (1994). Seasonal changes of the quantitative importance of protozoans in a large lake. An ecosystem approach using mass-balanced carbon flow diagrams. Mar. Microb. Food Webs 8: 163-188.
  • [29]. Garstecki, T., Verhoeven, R., Wickham, S.A. & Arndt, H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Freshw. Biol. 45: 147-167. DOI: 10.1046/j.1365-2427.2000.00676.x.
  • [30]. Gasol, J.M., Guerrero, R. & Pedrós-Alió, C. (1991). Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake Cisó. Limnol. Oceanogr. 36: 860-872.
  • [31]. Gifford, D.J. & Caron, D.A. (2000). Sampling, preservation, enumeration and biomass of marine protozooplankton. In R.P. Harris, P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (Eds.), ICES Zooplankton Methodology Manual (pp. 193-221). London: Academic Press.
  • [32]. Hansen, B., Christiansen, S. & Pedersen, G. (1996). Plankton dynamics in the marginal ice zone of the central Barents Sea during spring: carbon flow and structure of the grazer food chain. Polar Biol. 16: 115-128.
  • [33]. Hansen, PJ., Bjornsen, P.K. & Hansen, B.W. (1997). Zooplankton grazing and growth: scaling within the 2-2,000-^m body size range. Limnol. Oceanogr. 42: 687-704.
  • [34]. Hasle, G.R. (1978). The inverted-microscope method. In A. Sournia (Ed.), Phytoplankton manual (pp. 88-96). Paris: UNESCO.
  • [35]. Jarosiewicz, A. (2009). Seasonal dynamics of biogens in lake Marszewo: trophy state and eutrophication resistance. Teka Kom. Ochr. Kszt. Środ. Przyr. - OL PAN 6: 109-114.
  • [36]. Jarosiewicz, A. & Hetmański, T. (2009). Seasonal changes in nutrients concentration in lake Dobra (Pomeranian Lake District); trophic state of lake. Słupskie Pr. Biol. 6: 71-79. (In Polish with English abstract).
  • [37]. Jerome, C.A., Montagnes, D.J.S. & Taylor, F.J.R. (1993). The effect of the quantitative protargol stain and Lugol's and Bouin's fixatives on cell size: a more accurate estimate of ciliate species biomass. J. Euk. Microbiol. 40: 254-259.
  • [38]. Johansson, M., Gorokhova, E. & Larsson, U. (2004). Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26: 67-80. DOI: 10.1093/plankt/fbg115.
  • [39]. Jürgens, K., Skibbe, O. & Jeppesen, E. (1999). Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol. 17: 61-75.
  • [40]. Kalinowska, K. (2004). Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol. 52: 19-34.
  • [41]. Kerimoglu, O., Straile, D. & Peeters, F. (2014). Modeling the spring blooms of ciliates in a deep lake. Hydrobiologia 731: 173-189. DOI: 10.1007/s10750-013-1551-4.
  • [42]. Kiss, A.K., Acs, É., Kiss, K.T. & Török, J.K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121-138. DOI: 10.1016/j.ejop.2008.08.002.
  • [43]. Lavrentyev, PJ., McCarthy, M.J., Klarer, D.M., Jochem, F. & Gardner, W.S. (2004). Estuarine microbial food web patterns in a Lake Erie coastal wetland. Microb. Ecol. 48: 567-577. DOI: 10.1007/s00248-004-0250-0.
  • [44]. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114: 67-83.
  • [45]. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994a). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389.
  • [46]. Leakey, R.J.G., Burkill, P.H. & Sleigh, M.A. (1994b). Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. Mar. Biol. Assoc. UK74: 849-861.
  • [47]. Levinsen, H., Nielsen, T.G. & Hansen, B.W. (1999). Plankton community structure and carbon cycling on the western coast of Greenland during the stratified summer situation. II. Heterotrophic dinoflagellates and ciliates. Aquat. Microb. Ecol. 16: 217-232.
  • [48]. Lynn, D.H. & Montagnes, D.J.S. (1991). Global production of heterotrophic marine planktonic ciliates. In P.C. Reid, C.M. Turley & P.H. Burkill (Eds.), Protozoa and their role in marine processes, Vol. G25, NATO Publication (pp. 281-307). Berlin: Springer-Verlag.
  • [49]. Lynn, D.H., Roff, J.C. & Hopcroft, R.R. (1991). Annual abundance and biomass of aloricate ciliates in tropical neritic waters off Kingston, Jamaica. Mar. Biol. 110: 437-448.
  • [50]. Macek, M., Simek, K., Pernthaler, J., Vyhnâlek, V. & Psenner, R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18:463-481.
  • [51]. Marshall, S.M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117-127.
  • [52]. McManus, G.B. & Santoferrara, L.F. (2013). Tintinnids in microzooplankton communities. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 198-213). Chichester: Wiley-Blackwell.
  • [53]. Menden-Deuer, S. & Lessard, E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 569-579.
  • [54]. Mieczan, T. (2003). Preliminary study on planktonic ciliates in slightly eutrophic Lake Uściwierz. Acta Agroph. 1: 479-484.
  • [55]. Mironova, E., Telesh, I. & Skarlato, S. (2012). Diversity and seasonality in structure of ciliate communities in the Neva Estuary (Baltic Sea). J. Plankton Res. 34: 208-220. DOI: 10.1093/plankt/fbr095.
  • [56]. Mitra, A., Castellani, C., Gentleman, W.C., Jónasdóttir, S.H., Flynn, K.J. et al. (2014). Bridging the gap between marine biogeochemical and fisheries sciences; configuring the Zooplankton link. Prog. Oceanogr. 129: 176-199. DOI: 10.1016/j.pocean.2014.04.025.
  • [57]. Montagnes, D.J.S. (1996). Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium. Mar. Ecol. Prog. Ser. 130: 241-254.
  • [58]. Montagnes, D.J.S. (2013). Ecophysiology and behavior of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 85-121). Chichester: Wiley-Blackwell.
  • [59]. Montagnes, D.J.S., Berges, J.A., Harrison, PJ. & Taylor, F.J.R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39: 1044-1060.
  • [60]. Montagnes, D.J.S., Dower, J.F. & Figueiredo, G.M. (2010). The protozooplankton-ichthyoplankton trophic link: an overlooked aspect of aquatic food webs. J. Eukaryot. Microbiol. 57: 223-228. DOI: 10.1111/j.1550- 7408.2010.00476.x.
  • [61]. Montagnes, D.J.S., Kimmance, S.A. & Atkinson, D. (2003). Using Q10: can growth rates increase linearly with temperature? Aquat. Microb. Ecol. 32: 307-313.
  • [62]. Montagnes, D.J.S. & Lessard, E.J. (1999). Population dynamics of the marine planktonic ciliate Strombidinopsis multiauris: its potential to control phytoplankton blooms. Aquat. Microb. Ecol. 20: 167-181.
  • [63]. Montagnes, D.J.S., Lynn, D.H., Roff, J.C. & Taylor, W.D. (1988). The annual cycle of heterotrophic planktonic ciliates in the Annual production to biomass ratios of pelagic ciliates waters surrounding the Isles of Shoals, Gulf of Maine: an assessment of their trophic role. Mar. Biol. 99: 21-30.
  • [64]. Montagnes, D.J.S., Morgan, G., Bissinger, J.E., Atkinson, D. & Weisse, T. (2008). Short-term temperature change may impact freshwater carbon flux: a microbial perspective. Glob. Chang. Biol. 14: 2823-2838. DOI: 10.1111/j.1365- 2486.2008.01700.x.
  • [65]. Mooij, W.M., Trolle, D., Jeppesen, E., Arhonditis, G., Belolipetsky, P.V. et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat. Ecol. 44: 633-667. DOI: 10.1007/s10452-010-9339-3.
  • [66]. Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18: 261-273.
  • [67]. Müller, H. & Geller, W. (1993). Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol. 126: 315-327.
  • [68]. Müller, H., Schöne, A., Pinto-Coelho, R.M., Schweizer, A. & Weisse, T. (1991). Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119-138.
  • [69]. Müller, H. & Weisse, T. (1994). Laboratory and field observations on the scuticociliate Histiobalantium from the pelagic zone of Lake Constance, FRG. J. Plankton Res. 16: 391-401.
  • [70]. Nielsen, T.G. & Kiorboe, T. (1994). Regulation of zooplankton biomass and production in a temperate coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508-519.
  • [71]. Ohman, M.D. & Snyder, R.A. (1991). Growth kinetics of the omnivorous oligotrich ciliate Strombidium sp. Limnol. Oceanogr. 36: 922-935.
  • [72]. Packroff, G. (2000). Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433: 157-166.
  • [73]. Patterson, D.J. & Hedley, S. (2003). Free-living freshwater protozoa - a colour guide. Washington: Manson Publishing.
  • [74]. Pettigrosso, R.E. & Popovich, C.A. (2009). Phytoplankton- aloricate ciliate community in the Bahia Blanca Estuary (Argentina): seasonal patterns and trophic groups. Braz. J. Oceanogr. 57: 215-227.
  • [75]. Pérez, M.T., Dolan, J.R. & Fukai, E. (1997). Planktonic oligotrich ciliates in the NW Mediterranean: growth rates and consumption by copepods. Mar. Ecol. Prog. Ser. 155: 89-101.
  • [76]. Pfister, G., Auer, B. & Arndt, H. (2002a). Community analysis of pelagic ciliates in numerous different freshwater and brackish water habitats. Verh. Int. Verein. Theor. Angew. Limnol. 27: 3404-3408.
  • [77]. Pfister, G., Auer, B. & Arndt, H. (2002b). Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes - a community analysis at the species level. Limnologica 32: 147-168.
  • [78]. Putland, J.N. & Iverson, R.L. (2007). Microzooplankton: major herbivores in an estuarine planktonic food web. Mar. Ecol. Prog. Ser. 345: 63-73. DOI: 10.3354/meps06841.
  • [79]. Reiss, J. & Schmid-Araya, J.M. (2010). Life history allometries and production of small fauna. Ecology 91: 497-507.
  • [80]. Rose, J.M. & Caron, D.A. (2007). Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52: 886-895.
  • [81]. Rychert, K. (2009). Planktonic ciliates in the coastal medium- size river: diversity and productivity. Pol. J. Ecol. 57: 503-512.
  • [82]. Rychert, K., Wielgat-Rychert, M., Szczurowska, D., Myszka, M., Bochyńska, M. et al. (2012). The importance of ciliates as a trophic link in shallow, brackish, and eutrophic lakes. Pol. J. Ecol. 60: 767-776.
  • [83]. Rychert, K. (2013). A modified dilution method reveals higher protozoan growth rates than the size fractionation method. Eur. J. Protistol. 49: 249-254. DOI: 10.1016/j. ejop.2012.08.003.
  • [84]. Rychert, K., Spich, K., Laskus, K., Pączkowska, M., Wielgat- Rychert, M. et al. (2013). Composition of protozoan communities at two stations in the coastal zone of the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 42: 268-276. DOI: 10.2478/s13545-013-0083-x.
  • [85]. Sandberg, J. (2007). Cross-ecosystem analyses of pelagic food web structure and processes in the Baltic Sea. Ecol. Model. 201: 243-261. DOI: 10.1016/j.ecolmodel.2006.09.023.
  • [86]. Sanders, R.W. & Wickham, S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Mar. Microb. Food Webs 7: 197-223.
  • [87]. Seuthe, L., Iversen, K.R. & Narcy, F. (2011). Microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): II. Ciliates and dinoflagellates. Polar Biol. 34: 751-766. DOI: 10.1007/ s00300-010-0930-9.
  • [88]. Sherr, E.B. & Sherr, B.F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81: 293-308.
  • [89]. Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1-11.
  • [90]. Sonntag, B., Posch, T., Klammer, S., Teubner, K. & Psenner, R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43: 193-207.
  • [91]. Stoecker, D.K. (2013). Predators of tintinnids. In J.R. Dolan, D.J.S. Montagnes, S. Agatha, D.W. Coats & D.K. Stoecker (Eds.), The biology and ecology of tintinnid ciliates. Models for marine plankton (pp. 122-144). Chichester: Wiley- Blackwell.
  • [92]. Stoecker, D.K. & Capuzzo J.M. (1990). Predation on protozoa: its importance to zooplankton. J. Plankton Res. 12: 891-908.
  • [93]. Stoecker, D.K., Johnson, M., de Vargas, C. & Not, F. (2009). Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57: 279-310. DOI: 10.3354/ame01340.
  • [94]. Stoecker, D.K., Sieracki, M.E., Verity, P.G., Michaels, A.E., Haugen, E. et al. (1994). Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic bloom experiment: 1989 and 1990. J. Mar. Biol. Ass. UK 74: 427-443.
  • [95]. Stoecker, D.K., Taniguchi, A. & Michaels, A.E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50: 241-254.
  • [96]. Stukel, M.R. & Landry, M.R. (2010). Contribution of picophytoplankton to carbon export in the equatorial Pacific: a reassessment of food web flux inferences from inverse models. Limnol. Oceanogr. 55: 2669-2685. DOI: 10.4319/lo.2010.55.6.2669.
  • [97]. Tanaka, T., Rassoulzadegan, F. & Thingstad, T.F. (2004). Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa. Biogeosciences Discuss. 1: 413-428.
  • [98]. Taylor, W.D. & Johannsson, O.E. (1991). A comparison of estimates of productivity and consumption by zooplankton for ciliates in Lake Ontario. J. Plankton Res. 13: 363-372.
  • [99]. Tett, P. & Wilson, H. (2000). From biogeochemical to ecological models of marine microplankton. J. Mar. Syst. 25: 431-446.
  • [100]. Tirok, K. & Gaedkem, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquat. Microb. Ecol. 49: 87-100. DOI: 10.3354/ame01127.
  • [101]. Urrutxurtu, I., Orive, E. & de la Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Est. Coast. Shelf Sci. 57: 1169-1182. DOI: 10.1016/S0272-7714(03)00057-X.
  • [102]. Verity, P.G. (1986). Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser. 29: 117-126.
  • [103]. Verity, P.G. & Langdon, C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6: 859-868.
  • [104]. Wallberg, P., Jonsson, P.R. & Johnstone, R. (1999). Abundance, biomass and growth rates of pelagic microorganisms in a tropical coastal ecosystem. Aquat. Microb. Ecol. 18: 175-185.
  • [105]. Weisse, T. & Müller, H. (1998). Planktonic protozoa and the microbial food web in Lake Constance. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 53: 223-254.
  • [106]. Weisse, T. & Stadler, P. (2006). Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. Limnol. Oceanogr. 51: 1708-1715.
  • [107]. Weisse, T., Kirstens, N., Meyer, V.C.L., Janke, L., Lettner, S. et al. (2001). Niche separation in common prostome freshwater ciliates: the effect of food and temperature. Aquat. Microb. Ecol. 26: 167-179.
  • [108]. Weisse, T., Stadler, P., Lindström, E.S., Kimmance, S.A. & Montagnes, D.J.S. (2002). Interactive effect of temperature and food concentration on growth rate: a test case using the small freshwater ciliate Urotricha farcta. Limnol. Oceanogr. 47: 1447-1455.
  • [109]. Weitere, M., Scherwass, A., Sieben, K.-T. & Arndt, H. (2005). Planktonic food web structure and potential carbon flow in the lower River Rhine with the focus on the role of protozoans. River Res. Applic. 21: 535-549. DOI: 10.1002/ rra.825.
  • [110]. Wiackowski, K., Brett, M.T. & Goldman, Ch.R. (1994a). Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39: 486-492.
  • [111]. Wiackowski, K., Doniec, A. & Fyda, J. (1994b). An empirical study of the effect of fixation on ciliate cell volume. Mar. Microb. Food Webs 8: 59-69.
  • [112]. Wiackowski, K., Ventelä, A.-M., Moilanen, M., Saarikari, V., Vuorio, K. et al. (2001). What factors control planktonic ciliates during summer in a highly eutrophic lake? Hydrobiologia 443: 43-57.
  • [113]. Witek, M. (1998). Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83: 163-182.
  • [114]. Witek, Z. & Jarosiewicz, A. (2010). The oxygen budget of two closed, dimictic lakes in the vicinity of Bytów (West Pomeranian Lake District, northern Poland). Oceanol. Hydrobiol. Stud. 39: 135-145. DOI: 10.2478/v10009-010- 0022-8.
  • [115]. Xu, R.L. & Cronberg, G. (2010). Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community structure, seasonal dynamics and long-term changes. Protistology 6: 173-187.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aef7f8c9-3e3e-483f-8b26-7fff32a2930c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.