Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 127, nr 1-4 | 151--160
Tytuł artykułu

Classifiers Based on Optimal Decision Rules

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on dynamic programming approach we design algorithms for sequential optimization of exact and approximate decision rules relative to the length and coverage [3, 4]. In this paper, we use optimal rules to construct classifiers, and study two questions: (i) which rules are better from the point of view of classification – exact or approximate; and (ii) which order of optimization gives better results of classifier work: length, length+coverage, coverage, or coverage+length. Experimental results show that, on average, classifiers based on exact rules are better than classifiers based on approximate rules, and sequential optimization (length+coverage or coverage+length) is better than the ordinary optimization (length or coverage).
Słowa kluczowe
Wydawca

Rocznik
Strony
151--160
Opis fizyczny
Bibliogr. 17 poz., tab.
Twórcy
autor
  • Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia, beata.zielosko@kaust.edu.sa
Bibliografia
  • [1] Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Zielosko, B.: Dagger: A tool for analysis and optimization of decision trees and rules, in: Computational Informatics, Social Factors and New Information Technologies: Hypermedia Perspectives and Avant-Garde Experiences in the Era of Communicability Expansion (F. V. C. Ficarra, Ed.), Blue Herons, Bergamo, Italy, 2011, 29-39.
  • [2] Alsolami, F., Chikalov, I., Moshkov, M., Zielosko, B.: Optimization of inhibitory decision rules relative to length and coverage, in: RSKT 2012 (T. Li, H. S. Nguyen, G. Wang, J. W. Grzymała-Busse, R. Janicki, A. E. Hassanien, H. Yu, Eds.), vol. 7414 of LNCS, Springer, 2012, 149-154.
  • [3] Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approachfor exact decision rule optimization, in: Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam (A. Skowron, Z. Suraj, Eds.), vol. 42 of Intelligent Systems Reference Library, Springer, 2013, 211-228.
  • [4] Amin, T., Chikalov, I., Moshkov, M., Zielosko, B.: Dynamic programming approach to optimization of approximate decision rules, Inf. Sci., 221, 2013, 403-418.
  • [5] Ang, J., Tan, K., Mamun, A.: An evolutionary memetic algorithm for rule extraction, Expert Systems with Applications, 37(2), 2010, 1302-1315.
  • [6] Asuncion, A., Newman, D. J.: UCI Machine Learning Repository, http: //www. ics. uci. edu/~mlearn/, 2007.
  • [7] Blaszczynski, J., Slowinski, R., Szelag, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches, Inf. Sci., 181(5), 2011, 987-1002.
  • [8] Boryczka, U., Kozak, J.: New algorithms for generation decision trees - Ant-Miner and its modifications, in: Foundations of Computational Intelligence (6) (A. Abraham, A. E. Hassanien, A. C. P. de Leon Ferreira de Carvalho, V Snasel, Eds.), vol. 206 of Studies in Computational Intelligence, Springer, 2009, 229-262.
  • [9] Dembczynski, K., Kotlowski, W., Slowinski, R.: ENDER: a statistical framework for boosting decision rules, Data Min. Knowl. Discov., 21(1), 2010, 52-90.
  • [10] Lavrac, N., Furnkranz, J., Gamberger, D.: Explicit feature construction and manipulation for covering rule learning algorithms, in: Advances in Machine Learning I (J. Koronacki, Z. W. Ras, S. T. Wierzchon J. Kacprzyk, Eds.), vol. 262, Springer, 2010, 121-146.
  • [11] Liu, B., Abbass, H. A., McKay, B.: Classification rule discovery with ant colony optimization, in: IAT 2003, IEEE Computer Society, 2003, ISBN 0-7695-1931-8, 83-88.
  • [12] Moshkov, M., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications, vol. 145 of Studies in Computational Intelligence, Springer, Heidelberg, 2008, ISBN 978-3-540-69027-6.
  • [13] Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach, vol. 360 of Studies in Computational Intelligence, Springer, Heidelberg, 2011, ISBN 978-3-642-20994-9.
  • [14] Nguyen, H. S.: Approximate boolean reasoning: foundations and applications in data mining, in: Transactions on Rough Sets (J. F. Peters, A. Skowron, Eds.), vol. 4100 of LNCS, Springer, 2006, 334-506.
  • [15] Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning, Inf. Sci., 177(1), 2007, 41-73.
  • [16] Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, in: Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory (R. Slowinski, Ed.), Kluwer Academic Publishers, Dordrecht, 1992, 331-362.
  • [17] Slezak, D., Wroblewski, J.: Order based genetic algorithms forthe search of approximate entropy reducts, in: RSFDGrC 2003 (G. Wang, Q. Liu, Y. Yao, A. Skowron, Eds.), vol. 2639 of LNCS, Springer, 2003, 308-311.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-aef066af-cb1d-4e33-82e9-f07b43653f62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.