Warianty tytułu
Języki publikacji
Abstrakty
In transversely isotropic (TI) media, accurate and efcient pure P-wave extrapolation is the basis of seismic imaging and inversion algorithms. For pure P-wave equations in TI media, combining the fnite-diference (FD) method with the pseudospectral (PS) method is an efective solution. However, if the mixed-domain pure P-wave equation contains multiple wavenumbers, using the hybrid approach will involve multiple Fourier transforms, which will result in high computational costs. Referring to the weak anisotropy approximation, we propose a new approximate P-wave phase velocity expression. We then use an optimization strategy to reduce the number of wavenumber terms in the corresponding dispersion relations and derive the mixed-domain pure P-wave equations in 2D and 3D tilted transversely isotropic (TTI) media. Through numerical experiments in 2D and 3D TTI models, we verify the feasibility and efciency of the proposed mixed-domain P-wave equations.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
605--618
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China, libw18@mails.jlu.edu.cn
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China, wangdeli@jlu.edu.cn
autor
- Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China
autor
- Changjiang Geophysical Exploration and Testing CO. LTD., Wuhan, China
autor
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
Bibliografia
- 1. Alkhalifah T (1998) Acoustic approximations for processing in transversely isotropic media. Geophysics 63(2):623–631. https://doi.org/10.1190/1.1444361
- 2. Alkhalifah T (2000) An acoustic wave equation for anisotropic media. Geophysics 65(4):1239–1250. https://doi.org/10.1190/1.1444815
- 3. Alkhalifah T (2013) Residual extrapolation operators for efficient wavefield construction. Geophys J Int 193(2):1027–1034. https://doi.org/10.1093/gji/ggt040
- 4. Alkhalifah T (2014) Effective wavefield extrapolation in anisotropic media: accounting for resolvable anisotropy. Geophys Prospect 62(5):1089–1099. https://doi.org/10.1111/1365-2478.12121
- 5. Chu C, Macy BK, Anno PD (2011) Approximation of pure acoustic seismic wave propagation in TTI media. Geophysics 76(5):WB97–WB107. https://doi.org/10.1190/geo2011-0092.1
- 6. Chu C, Macy BK, Anno PD (2013) Pure acoustic wave propagation in transversely isotropic media by the pseudospectral method. Geophys Prospect 61(3):556–567. https://doi.org/10.1111/j.1365-2478.2012.01077.x
- 7. Crawley S, Brandsberg-Dahl S, McClean J, Chemingui N (2010) TTI reverse time migration using the pseudo-analytic method. Lead Edge 29(11):1378–1384. https://doi.org/10.1190/1.3517310
- 8. Du X, Bancroft JC, Lines LR (2007) Anisotropic reverse-time migration for tilted TI media. Geophys Prospect 55(6):853–869. https://doi.org/10.1111/j.1365-2478.2007.00652.x
- 9. Du X, Fletcher RP, Fowler PJ (2008) A new pseudo-acoustic wave equation for VTI media. EAGE Tech Prog Ext Abstr. https://doi.org/10.3997/2214-4609.20147774
- 10. Duveneck E, Milcik P, Bakker PM, Perkins C (2008) Acoustic VTI wave equations and their application for anisotropic reverse-time migration. SEG Tech Prog Expand Abstr doi 10(1190/1):3059320
- 11. Duveneck E, Bakker PM (2011) Stable P-wave modeling for reverse-time migration in tilted TI media. Geophysics 76(2):S65–S75. https://doi.org/10.1190/1.3533964
- 12. Etgen JT, Brandsberg-Dahl S (2009) The pseudo-analytical method: application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation. SEG Tech Prog Expand Abstr doi 10(1190/1):3255375
- 13. Fletcher R, Du X, Fowler PJ (2008) A new pseudo-acoustic wave equation for TI media. SEG Tech Prog Expand Abstr doi 10(1190/1):3059301
- 14. Fletcher RP, Du X, Fowler PJ (2009) Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics 74(6):WCA179–WCA187. https://doi.org/10.1190/1.3269902
- 15. Fomel S, Ying L, Song X (2013) Seismic wave extrapolation using lowrank symbol approximation. Geophys Prospect 61(3):526–536. https://doi.org/10.1111/j.1365-2478.2012.01064.x
- 16. Fornberg B (1987) The pseudospectral method: comparisons with finite differences for the elastic wave equation. Geophysics 52(4):483–501. https://doi.org/10.1190/1.1442319
- 17. Fowler PJ (2003) Practical VTI approximations: a systematic anatomy. J Appl Geophys 54(3–4):347–367. https://doi.org/10.1016/j.jappgeo.2002.12.002
- 18. Fowler PJ, Du X, Fletcher RP (2010) Coupled equations for reverse time migration in transversely isotropic media. Geophysics 75(1):S11–S22. https://doi.org/10.1190/1.3294572
- 19. Grechka V, Zhang L, Rector JW (2004) Shear waves in acoustic anisotropic media. Geophysics 69(2):576–582. https://doi.org/10.1190/1.1707077
- 20. Harlan W (1995) Flexible seismic traveltime tomography applied to diving waves. Stanford Explor Proj Rep 89:145–164
- 21. Jin S, Stovas A (2018) S-wave kinematics in acoustic transversely isotropic media with a vertical symmetry axis. Geophys Prospect 6(6):1123–1137. https://doi.org/10.1111/1365-2478.12635
- 22. Jin S, Stovas A (2020) S-wave in 2D acoustic transversely isotropic media with a tilted symmetry axis. Geophys Prospect 68(2):483–500. https://doi.org/10.1111/1365-2478.12856
- 23. Kosloff DD, Baysal E (1982) Forward modeling by a Fourier method. Geophysics 47(10):1402–1412. https://doi.org/10.1190/1.1441288
- 24. Kosloff D, Filho AQ, Tessmer E, Behle A (1989) Numerical solution of the acoustic and elastic wave equations by a new rapid expansion method 1. Geophys Prospect 37(4):383–394. https://doi.org/10.1111/j.1365-2478.1989.tb02212.x
- 25. Liu F, Morton SA, Jiang S, Ni L, Leveille JP (2009) Decoupled wave equations for P and SV waves in an acoustic VTI media. SEG Tech Prog Expand Abstr. https://doi.org/10.1190/1.3255440
- 26. Pestana RC, Stoffa PL (2010) Time evolution of the wave equation using rapid expansion method. Geophysics 75(4):T121–T131. https://doi.org/10.1190/1.3449091
- 27. Pestana RC, Ursin B, Stoffa PL (2011) Separate P-and SV-wave equations for VTI media. SEG Tech Prog Expand Abstr. https://doi.org/10.1190/1.3627518
- 28. Pestana RC, Ursin B, Stoffa PL (2012) Rapid expansion and pseudo spectral implementation for reverse time migration in VTI media. J Geophys Eng 9(3):291–301. https://doi.org/10.1088/1742-2132/9/3/291
- 29. Reshef M, Kosloff D, Edwards M, Hsiung C (1988) Three-dimensional acoustic modeling by the Fourier method. Geophysics 53(9):1175–1183. https://doi.org/10.1190/1.1442557
- 30. Saenger EH, Gold N, Shapiro SA (2000) Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion 31(1):77–92. https://doi.org/10.1016/S0165-2125(99)00023-2
- 31. Saenger EH, Bohlen T (2004) Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics 69(2):583–591. https://doi.org/10.1190/1.1707078
- 32. Song X, Fomel S, Ying L (2013) Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophys J Int 193(2):960–969. https://doi.org/10.1093/gji/ggt017
- 33. Sun J, Fomel S, Ying L (2016) Low-rank one-step wave extrapolation for reverse time migration. Geophysics 81(1):S39–S54. https://doi.org/10.1190/geo2015-0183.1
- 34. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966. https://doi.org/10.1190/1.1442051
- 35. Tsvankin I (1996) P-wave signatures and notation for transversely isotropic media: an overview. Geophysics 61(2):467–483. https://doi.org/10.1190/1.1443974
- 36. Vernik L, Liu X (1997) Velocity anisotropy in shales: a petrophysical study. Geophysics 62(2):521–532. https://doi.org/10.1190/1.1444162
- 37. Wu Z, Alkhalifah T, Zhang Z (2019) A partial-low-rank method for solving acoustic wave equation. J Comput Phys 385:1–12. https://doi.org/10.1016/j.jcp.2019.01.054
- 38. Xu S, Stovas A, Alkhalifah T, Mikada H (2020) New acoustic approximation for transversely isotropic media with a vertical symmetry axis. Geophysics 85(1):C1–C12. https://doi.org/10.1190/geo2019-0100.1
- 39. Yang L, Yan H, Liu H (2016) Optimal implicit staggered-grid finite-difference schemes based on the sampling approximation method for seismic modelling. Geophys Prospect 64(3):595–610. https://doi.org/10.1111/1365-2478.12325
- 40. Zhan G, Pestana RC, Stoffa PL (2012) Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics 77(2):T37–T45. https://doi.org/10.1190/geo2011-0175.1
- 41. Zhan G, Pestana RC, Stoffa PL (2013) An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation. J Geophys Eng 10(2):025004. https://doi.org/10.1088/1742-2132/10/2/025004
- 42. Zhang Y, Zhang H, Zhang G (2011) A stable TTI reverse time migration and its implementation. Geophysics 76(3):WA3–WA11. https://doi.org/10.1190/1.3554411
- 43. Zhang ZD, Alkhalifah T, Wu Z (2019) A hybrid finite-difference/low-rank solution to anisotropy acoustic wave equations. Geophysics 84(2):T83–T91. https://doi.org/10.1190/geo2018-0333.1
- 44. Zhou H, Zhang G, Bloor R (2006a) An anisotropic acoustic wave equation for VTI media. EAGE Tech Prog Ext Abstr. https://doi.org/10.3997/2214-4609.201402310
- 45. Zhou H, Zhang G, Bloor R (2006b) An anisotropic acoustic wave equation for modeling and migration in 2D TTI media. SEG Tech Prog Expand Abstr. https://doi.org/10.1190/1.2369913
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ae79af71-be12-43e9-9325-a67732de25c3