Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 41, No. 2 | 383--400
Tytuł artykułu

Investigation of additive manufactured micro-lattice structures for defence applications

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the blast mitigation capabilities of A286 steel micro-lattice structures produced through additive manufacturing. The research explores the effects of different manufacturing conditions, such as stress relief and heat treatment, on the mechanical properties and blast resistance of honeycomb and gyroid lattice structures in correlation with armour steel structures. Comprehensive evaluations, including surface morphology, corrosion resistance, and compressive residual stress analysis, reveal notable findings for micro-lattice structures. Micro-lattice structures demonstrated 57.23% higher corrosion resistance compared to conventional materials, presently available in the form of rolled homogeneous armour, medium hardness armour, and high-nitrogen steel. Additionally, honeycomb lattice structures exhibit compressive residual stresses of up to 581.90 MPa, providing significant advantages in blast mitigation potential. These results underscore the significance of lattice geometry, material microstructure, and residual stress in enhancing blast resistance. The research offers valuable insights into optimizing additive manufactured structures as an alternative modular solution for defence applications.
Wydawca

Rocznik
Strony
383--400
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Combat Vehicle Research Establishment (CVRDE), Defence Research Development Organization (DRDO),Avadi, Chennai 600054, Tamil Nadu, Chennai
  • Department of Mechanical Engineering, Indian Institute of Information Technology Design andManufacturing Kurnool (IIITDMK), 518008, Andhra Pradesh, India
  • Department of Mechanical Engineering, Indian Institute of Information Technology Design andManufacturing Kurnool (IIITDMK), 518008, Andhra Pradesh, India, sivareddy.bobbili@gmail.com
  • Department of Mechanical Engineering, Indian Institute of Information Technology Design and Manufacturing Kurnool (IIITDMK), 518008, Andhra Pradesh, India, chandrasekhar@iiitk.ac.in
  • Department of Mechanical Engineering, Indian Institute of Information Technology Design andManufacturing Kurnool (IIITDMK), 518008, Andhra Pradesh, India
  • Defence Metallurgical Research Laboratory (DMRL), Hyderabad 500066, Telangana, India
Bibliografia
  • [1] Ashby MF, Gibson LJ. Cellular solids: structure and properties. Cambridge (UK): Press Syndicate of the University of Cambridge; 1997. p. 175–231.
  • [2] Wang Z. Recent advances in novel metallic honeycomb structure. Compos. B. Eng. 2019;166:731–41. doi: 10.1016/j.compositesb.2019.02.011
  • [3] Germscheidt RL, Silva MB, Datti E, Bonacin JA. Materials and challenges of 3D printing for defense applications and humanitarian actions. In: Gupta RK, editor. 3D printing: fundamentals to emerging applications. Boca Raton (FL): CRC Press; 2023. p. 471–83.
  • [4] Deters J. 3D printing impacts on systems engineering in the defense industry. In: Badiru AB, Valencia VV, Liu D, editors. Additive manufacturing handbook. Boca Raton (FL): CRC Press; 2017. p. 49–56.
  • [5] Zhang S, Chen W, Gao D, Xiao L, Han L. Experimental study on dynamic compression mechanical properties of aluminium honeycomb structures. Appl. Sci. 2020;10(3):1188. doi: 10.3390/app10031188
  • [6] Thirumavalavan K, Chandrasekhar SC, Abeens M, Muruganandhan R, Manickam MM. Study on the influence of process parameters of severe surface mechanical treatment process on the surface properties of AA7075 T651 using TOPSIS and Taguchi analysis. Mater Res Express. 2019;6(11):1165i1. doi: 10.1088/2053-1591/ab522f
  • [7] Sastry CC, Abeens M, Pradeep N, Manickam MM. Microstructural analysis, radiography, tool wear characterization, induced residual stress and corrosion behavior of conventional and cryogenic trepanning of DSS 2507. J Mech Sci Technol. 2020;34:2535–47. doi: 10.1007/s12206-020-0529-1
  • [8] Pradeep N, Shaik AM, Rahman HA. Patil S. Experimental investigation of electrodeposited Ni-Al2O3/ZrO2 nano composite on HSLA ASTM A860 alloy. Surf Topogr Metrol Prop. 2021;9(4):045028. doi: 10.1088/2051-672X/ac396a
  • [9] Li T, Wang L. Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Compos Struct. 2017;175:46–57. doi: 10.1016/j.compstruct.2017.05.001
  • [10] Bogusz P, Popławski A, Stankiewicz M, Kowalski B. Experimental research of selected lattice structures developed with 3D printing technology. Materials. 2022;15(1):378. doi: 10.3390/ma15010378
  • [11] Butt MZ, Ali D, Aftab M, Bashir F, Pervaiz MS, Tanveer MU, Khaliq MW. Nitrogen ions implantation in W-based quad alloy: structure, electrical resistivity, surface roughness and Vickers hardness as a function of ion dose. Met Mater Int. 2021;27:3342–58. doi: 10.1007/s12540-020-00861-z
  • [12] Sastry CC, Hariharan P, Pradeep Kumar M, Muthu Manickam MA. Experimental investigation on boring of HSLA ASTM A36 steel under dry, wet, and cryogenic environments. Mat Manufact Proc. 2019;34(12): 1352–79. doi: 10.1080/10426914.2019.1643477
  • [13] Alizadeh-Sh M, Marashi SPH, Ranjbarnodeh E, Shoja-Razavi R, Oliveira JP. Dissimilar laser cladding of Inconel 718 powder on A-286 substrate: microstructural evolution. J Laser Appl. 2020;32(2). doi: 10.2351/1.5124932
  • [14] Hazell PJ. Armour: materials, theory, and design. 1st ed. Boca Raton (FL): CRC Press; 2015. P. 182–274. ebook ISBN 978042915660
  • [15] Dong FY, Zhang P, Pang JC, Ren YB, Yang K, Zhang ZF. Strength, damage and fracture behaviors of high-nitrogen austenitic stainless steel processed by high-pressure torsion. Scr Mater. 2015;96, 5–8. doi: 10.1016/j.scriptamat.2014.09.016
  • [16] Qi C, Yang S, Yang LJ, Wei ZY, Lu ZH. Blast resistance and multi-objective optimization of aluminum foam-cored sandwich panels. Compos Struct. 2013;105:45–57. doi: 10.1016/j.compstruct.2013.04.043
  • [17] Dharmasena KP, Wadley HN, Xue Z, Hutchinson JW. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int J Impact Eng. 2013;35(9):1063–74. doi: 10.1016/j.ijimpeng.2007.06.008
  • [18] Evans AG, He M, Deshpande VS, Hutchinson JW, Jacobsen AJ, Carter WB. Concepts for enhanced energy absorption using hollow microlattices. Int J Impact Eng. 2010;37(9):947–59. doi: 10.1016/j.ijimpeng.2010.03.007
  • [19] Davami K, Mohsenizadeh M, Munther M, Palma T, Beheshti A, Momeni K. Dynamic energy absorption characteristics of additively manufactured shape-recovering lattice structures. Mater Res Express. 2019;6(4):045302. doi.org/10.1088/2053-1591/aaf78c
  • [20] Li D, Qin R, Xu J, Chen B, Niu X. Effect of heat treatment on AlSi10Mg lattice structure manufactured by selective laser melting: microstructure evolution and compression properties. Mater Charact. 2022;187:111882. doi: 10.1016/j.matchar.2022.111882
  • [21] Khan HM, Özer G, Yilmaz MS, Koç E. Corrosion of additively manufactured metallic components: a review. Arab J Sci Eng. 2022;47(5):5465–90. doi: 10.1007/s13369-021-06481-y
  • [22] Ahmed N, Barsoum I, Abu Al-Rub RK. Numerical investigation on the effect of residual stresses on the effective mechanical properties of 3D-printed TPMS lattices. Metals. 2022;12(8):1344. doi: 10.3390/met12081344
  • [23] Kelin LI, Yangjilian LIAO, Lin GU, Guojian HE, Wansheng ZHAO. Study on residual stress of blasting erosion arc machined Ti6Al4V and TiAl alloys. Proc CIRP. 2022;113:507–12. doi: 10.1016/j.procir.2022.09.168
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ae51cd04-c9f7-4b9e-987f-1317087b4325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.