Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 12 | 104--108
Tytuł artykułu

Adaptive control for power management based on renewable energy

Treść / Zawartość
Warianty tytułu
PL
Sterowanie adaptacyjne do zarządzania energią w oparciu o energię odnawialną
Języki publikacji
EN
Abstrakty
EN
A special form of energy system that can be utilized to provide all the energy needed in the globe is the renewable hybrid system. In order to successfully use renewable energy and decrease the amount of energy drawn from the power grid, a micro-grid management technique based on renewable energy has been developed in this study. The utilization of renewable energy sources, such as solar energy from photovoltaic panels and wind energy (from wind turbines), may run loads more effectively while consuming less fuel. To regulate the electricity, an adaptive control system was also created. The performance of the suggested control method for managing power flow is demonstrated by simulation results acquired using MATLAB/Simulink in a variety of operating modes.
PL
Specjalną formą systemu energetycznego, który może być wykorzystany do dostarczenia całej energii potrzebnej na świecie, jest odnawialny system hybrydowy. W celu skutecznego wykorzystania energii odnawialnej i zmniejszenia ilości energii pobieranej z sieci elektroenergetycznej, w niniejszym opracowaniu opracowano technikę zarządzania mikrosieciami opartą na energii odnawialnej. Wykorzystanie odnawialnych źródeł energii, takich jak energia słoneczna z paneli fotowoltaicznych i energia wiatrowa (z turbin wiatrowych), może efektywniej obsługiwać obciążenia przy mniejszym zużyciu paliwa. Aby regulować energię elektryczną, stworzono również adaptacyjny system sterowania. Wydajność proponowanej metody sterowania przepływem mocy została zademonstrowana na podstawie wyników symulacji uzyskanych przy użyciu MATLAB/Simulink w różnych trybach pracy.
Wydawca

Rocznik
Strony
104--108
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
Bibliografia
  • [1] H. Sawall, A. Scheuriker, and D. Stetter, ‘‘Flexibility definition for smart grid cells in a decentralized energy system,’’ in Proc. 7th Int. Conf. Smart Cities Green ICT Syst., (2018), pp. 130– 139. DOI:10.5220/0006803401300139
  • [2] M. M. Hossain, K. R. Zafreen, A. Rahman, M. A. Zamee, and T. Aziz, ‘‘An effective algorithm for demand side management in smart grid for residen-tial load,’’ in Proc. 4th Int. Conf. Adv. Electr. Eng. (ICAEE), (2017), pp. 336–340. DOI: 10.1109/ICAEE.2017.8255377
  • [3] X. Jiang and C. Xiao, ‘‘Household energy demand management strategy based on operating power by genetic algorithm,’’ IEEE Access, vol. 7, (2019), pp. 96414–96423. DOI:10.1109/ACCESS.2019.2928374
  • [4] T. Sattarpour, D. Nazarpour, and S. Golshannavaz, ‘‘A multi-objective HEM strategy for smart home energy scheduling: A collaborative approach to support microgrid operation,’’ Sustain. Cities Soc., vol. 37, (2018), pp. 26–33. DOI: 10.1016/j.scs.2017.09.037
  • [5] F. S. Fabiani Appavou, Adam Brown, Bärbel Epp, Duncan Gibb, Bozhil Kondev, Angus McCrone, Hannah E. Murdock, Evan Musolino, Lea Ranalder, Janet L. Sawin, Kristin Seyboth, Jonathan Skeen, Renewbles in Cities - 2021 Global Status Report, pages 52, 118, 146, https://www.ren21.net/wpcontent/uploads/2019/05/GSR2021_Full_Report.pdf
  • [6] A. Alamri, and I. Azim Niaz, ‘‘An optimized home energy management system with integrated renewable energy and storage resources,’’ Energies, vol. 10, (2017), no. 4, p. 549. DOI:10.3390/en10040549
  • [7] H. T. Dinh, J. Yun, D. M. Kim, K. Lee, and D. Kim, ‘‘A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling,’’ IEEE Access, vol. 8, (2020), pp. 49436–49450. DOI:10.1109/ACCESS.2020.2979189
  • [8] C. Byers and A. Botterud, ‘‘Additional capacity value from synergy of variable renewable energy and energy storage,’’ IEEE Trans. Sustain. Energy, vol. 11, (2020), no. 2, pp. 1106– 1109. DOI: 10.1109/TSTE.2019.2940421
  • [9] M. Rizwan, L. Hong, W. Muhammad, S. W. Azeem, and Y. Li, ‘‘Hybrid Harris Hawks optimizer for integration of renewable energy sources considering stochastic behaviour of energy sources,’’ Int. Trans. Elect. Energy Syst., vol. 31, (2021), no. 2, Art. no. e12694, DOI: 10.1002/2050-7038.12694.
  • [10] A. Kadri, H. Marzougui, A. Aouiti, and F. Bacha, ‘‘Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system,’’ Energy, vol. 192, (2020), Art. no. 116518. DOI: 10.1016/j.energy.2019.116518
  • [11] Jie, Wu. "Control technologies in distributed generation system based on renewable energy." 3rd IEEE International Conference on Power Electronics Systems and Applications (PESA), (2009).
  • [12] Bagherian, Alireza, and SM Moghaddas Tafreshi. "A developed energy management system for a microgrid in the competitive electricity market." IEEE Bucharest PowerTech, (2009). DOI: 10.1109/PTC.2009.5281784
  • [13] Jiang, Zhenhua, and Xunwei Yu "Hybrid DC and AC-linked microgrids: towards integration of distributed energy resources", IEEE Energy 2030 Conference, (2008). DOI: 10.1109/ENERGY.2008.4781029
  • [14] Brenna, Morris, Enrico Tironi, and Giovanni Ubezio. "Proposal of a local dc distribution network with distributed energy resources." 11th International Conference on Harmonics and Quality of Power, IEEE Cat. No. 04EX951, (2004). DOI: 10.1109/ICHQP.2004.1409388
  • [15] Maaruf, Muhammad, Khalid Khan, and Muhammad Khalid. "Robust control for optimized islanded and grid-connected operation of solar/wind/battery hybrid energy." Sustainability 14.9, 5673, (2022). DOI: 10.3390/su14095673
  • [16] Chouaib, Ammari, Hamouda Messaoud, and Makhloufi Salim. "Sizing, modelling and simulation for Hybrid Central PV/wind turbine/diesel generator for feeding rural village in South Algeria." EAI Endorsed Transactions on Energy Web 4.15 (2017). DOI: 10.1002/est2.211
  • [17] S. Lee, J. Lee, H. Jung, J. Cho, J. Hong, S. Lee, and D. Har, ‘‘Optimal power management for nanogrids based on technical information of electric appliances,’’ Energy Buildings, vol. 191, (2019), pp. 174–186. DOI: 10.1016/j.enbuild.2019.03.026
  • [18] F. K. Arabul, A. Y. Arabul, C. F. Kumru, and A. R. Boynuegri, ‘‘Providing energy management of a fuel cell–battery–wind turbine–solar panel hybrid off grid smart home system,’’ Int. J. Hydrogen Energy, vol. 42, no. 43, (2017), pp. 26906–26913. DOI: 10.1016/j.ijhydene.2017.02.204
  • [19] Kavya, M., and S. Jayalalitha. "Developments in perturb and observe algorithm for maximum power point tracking in photo voltaic panel: A review." Archives of Computational Methods in Engineering 28, (2021), 2447-2457. DOI:10.1007/s11831-020- 09461
  • [20] Motahhir, Saad, Aboubakr El Hammoumi, and Abdelaziz El Ghzizal. "The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm." Journal of cleaner production, (2020). DOI: 10.1016/j.jclepro.2019.118983
  • [21] Putri, Ratna Ika, et al. "Maximum power extraction improvement using sensorless controller based on adaptive perturb and observe algorithm for PMSG wind turbine application." IET Electric Power Applications, (2018), 455-462. DOI: 10.1049/iet-epa.2017.0603
  • [22] Twaha, Ssennoga, and Makbul AM Ramli. "A review of optimization approaches for hybrid distributed energy generation systems: off-grid and grid-connected systems." Sustainable Cities and Society 41, (2018), 320-331. DOI: 10.1016/j.scs.2018.05.027
  • [23] Mahmoud, Fayza S., et al. "Sizing and Design of a PV-Wind-Fuel Cell Storage System Integrated into a Grid Considering the Uncertainty of Load Demand Using the Marine Predators Algorithm." Mathematics, (2022). DOI: 10.3390/math10193708
  • [24] Singh, Urvi, et al. "Energy Management System and Its Implementation in Smart Grid using Renewable Energy Resources." International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS), IEEE, 2018. DOI: 10.1109/SEEMS.2018.8687351
  • [25] Mohammed Y. Suliman and Farrag M. E., "Power Balance and Control of Transmission lines using Static Series Compensator", 53rd International Universities Power Engineering Conference (UPEC), IEEE,(2018), pp 1-5. DOI: 10.1109/UPEC.2018.8541894
  • [26] Suliman, Mohammed Yahya. "Active and reactive power flow management in parallel transmission lines using static series compensation (SSC) with energy storage." International Journal of Electrical and Computer Engineering, (2019). DOI: 10.11591/ijece.v9i6.pp4598-4609
  • [27] Mahmood T. Alkhayyat, Suliman, Mohammed Yahya. "Neuro Fuzzy based SSSC for Active and Reactive Power Control in AC Lines with Reduced Oscillation." Przegląd Elektrotechniczny, 79 (2021), nr 3, 75-79. DOI: 10.11591/eei.v9i5.2290
  • [28] M. Y. Suliman and Mahmood T. Al-Khayyat, “Power flow control in parallel transmission lines based on UPFC”, Bulletin of Electrical Engineering and Informatics, vol. 9, (2020), no. 5, pp. 17551765. DOI: 10.11591/eei.v9i5.2290
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ae439686-f12c-470f-9ac0-1b9ba423e123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.