Czasopismo
2024
|
Vol. 23, no. 3
|
283--309
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Analiza mechanizmów zniszczenia wieloprzęsłowych murowanych mostów łukowych z zastosowaniem chmury danych i modelowania numerycznego 3D
Języki publikacji
Abstrakty
Historical structures, including historical bridges, are part of cultural heritage, conveying the traces and characteristic features of past civilizations. To protect historical structures, it is necessary to prepare their 3D photogrammetric documentation, determine detailed geometric and material properties and perform computer-aided structural analysis using appropriate modeling techniques. The aim of this study is to present an effective, reliable and fast multidisciplinary approach for the analysis of historical masonry bridges. The aforementioned approach was illustrated with an example of the historical Halilviran masonry arch bridge and its behavior under possible loadings. Terrestrial laser scanning (TLS) was used to determine the bridge geometry with high accuracy. Point cloud data obtained from TLS was simplified and a three-dimensional CAD-based solid model of the structure was created. The Halilviran Bridge case study summarized in this report was conducted to examine the technical feasibility of using laser scanning technologies for obtaining as-built records for similar historic bridges. A secondary objective was to identify other applications of this technology, notably for other transportation structures, and use numerical methods to assess the seismic behavior and failure model of the bridge. The seismic behavior of the bridge was examined using a finite-element- based macromodeling technique. Nonlinear dynamic analyses were carried out subsequently to identify the most susceptible regions of the bridge. Interpretation of the results, presented in the form of contour plots illustrating tensile damage and maximum displacements, offered a comprehensive depiction of the seismic response across the entire bridge. The methodology employed in this investigation can be viewed as a robust framework for evaluating the seismic response and potential failure of historical structures.
Zabytkowe konstrukcje, w tym historyczne mosty, stanowią dokument istnienia dawnych cywilizacji i są ważnym elementem dziedzictwa kulturowego. Należyta ochrona takich obiektów wymaga przygotowania ich dokumentacji fotogrametrycznej w 3D, określenia szczegółowych właściwości geometrycznych i materiałowych oraz przeprowadzenia analiz konstrukcyjnych z zastosowaniem odpowiednich technik modelowania. Celem pracy jest przedstawienie skutecznej, niezawodnej i szybkiej metody analizy historycznych mostów murowanych. Podejście to zostało zilustrowane na przykładzie zabytkowego murowanego mostu łukowego Halilviran i jego zachowania pod potencjalnymi obciążeniami. Do określenia geometrii mostu z wysoką dokładnością wykorzystano technikę naziemnego skaningu laserowego (TLS). Dane zostały zgromadzone w chmurze i na tej podstawie stworzono trójwymiarowy model mostu, wykorzystując oprogramowanie CAD. Przedstawiona analiza stanowi weryfikację możliwości wykorzystania technologii skaningu laserowego do inwentaryzacji podobnych obiektów historycznych. Dodatkową korzyścią przedstawionej metody jest jej wykorzystanie w odniesieniu do innych elementów infrastruktury transportowej, jak również wykorzystanie zastosowanych metod numerycznych do oceny zachowania i ewentualnych mechanizmów zniszczenia mostu pod wpływem oddziaływań sejsmicznych. Właściwości sejsmiczne mostu zostały zbadane techniką modelowania w skali makro z zastosowaniem metody elementów skończonych. Następnie przeprowadzono nieliniowe analizy dynamiczne celem wskazania najbardziej narażonych obszarów mostu. Wyniki, przedstawione jako wykresy konturowe obrazujące naprężenia i maksymalne przemieszczenia, pozwalają na kompleksową analizę odpowiedzi całego obiektu na wpływy sejsmiczne. Przedstawiona metodyka może być postrzegana jako wszechstronny zestaw narzędzi do oceny odpowiedzi i ewentualnych mechanizmów zniszczenia historycznych obiektów pod wpływem oddziaływań sejsmicznych.
Czasopismo
Rocznik
Tom
Strony
283--309
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Istanbul Technical University, Institute of Earthquake Engineering and Disaster Management, 34469, Maslak, Istanbul, Turkey, azar19@itu.edu.tr
autor
- Istanbul Technical University, Faculty of Civil Engineering, 34469, Maslak, Istanbul, Turkey, asari@itu.edu.tr
Bibliografia
- 1. Małyszko L., Jemioło S., Gajewski M.D., Bilko P.: FEM and Constitutive Modelling in Failure Analyses of Masonry Structures. Orthotropic Fail. Criteria. WTA-Schriftenreihe, 33, 2009, 371-394
- 2. Armstrong D.M., Sibbald A., Fairfield C.A., Forde M.C.: Modal Analysis for Masonry Arch Bridge Spandrell Wall Separation Identification. NDT & E International, 28, 6, 1995, 377-386
- 3. Melbourne C., Tomor A.K., Wang J.: Cyclic load capacity and endurance limit of multi-ring masonry arches. Proceedings of Arch Bridge IV “Advances in Assessment, Structural design and construction”. CIMNE, Barcelona, 2004, 375-384
- 4. Royles R., Hendry A.W.: Model tests on masonry arches. Proceedings of the Institution of Civil Engineers. Part 2: Research and Theory, 1991, 91, 299-321, DOI: 10.1680/iicep.1991.14997
- 5. Begimgil M.: Behaviour of Restrained 1.25 m Span Model Masonry Arch Bridge. In: Melbourne C. (ed.), First International Conference on Arch Bridges, Thomas Telford, Bolton, UK, 1995, 321-325
- 6. Fanning P.J., Boothby T.E.: Three-dimensional modelling and full-scale testing of stone arch bridges. [online]. Computers & Structures, 79, 29-30, 2001, 2645-2662, DOI: 10.1016/S0045-7949(01)00109-2
- 7. Fanning P.J., Sobczak L., Boothby T.E., Salomoni V.: Load testing and model simulations for a stone arch bridge. Bridge Structures Assessment Design and Construction, 1, 4, 2005, 367-378, DOI: 10.1080/15732480500453532
- 8. Brencich A., Lątka D., Matysek P., Orban Z., Sterpi E.: Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests. Construction and Building Materials, 306, 2021, 124494, DOI: 10.1016/j.conbuildmat.2021.124494
- 9. Valente M., Milani G.: Earthquake-induced damage assessment and partial failure mechanisms of an Italian Medieval castle. Engineering Failure Analysis, 99, 2019, 292-309, DOI: 10.1016/j.engfailanal.2019.02.008
- 10. Sevim B., Bayraktar A., Altunişik A.C., Atamtürktür S., Birinci F.: Finite element model calibration effects on the earthquake response of masonry arch bridges. Finite Elements in Analysis and Design, 47, 7, 2011, 621-634, DOI: 10.1016/j.finel.2010.12.011
- 11. Pelà L., Aprile A., Benedetti A.: Comparison of seismic assessment procedures for masonry arch bridges. Construction and Building Materials, 38, 2013, 381-394, DOI: 10.1016/j.conbuildmat.2012.08.046
- 12. Yilmaz E.G., Sayin E., Özmen A.: Dynamic analysis of historical masonry arch bridges under different earthquakes: The case of Murat Bey Bridge. Turkish Journal of Science and Technology, 17, 2, 2022, 461-473, DOI: 10.55525/tjst.1105998
- 13. Azar A.B., Sari A.: Historical arch bridges-deterioration and restoration techniques. Civil Engineering Journal (Iran), 9, 7, 2023, 1680-1696, DOI: 10.28991/CEJ-2023-09-07-010
- 14. Kowalewski Ł., Gajewski M.: Cohesive element approach for determination of masonry panels limit states. Chapter XI in monograph Theoretical Foundations of Civil Engineering, VII, Structural Mechanics, Eds. S. Jemioło & M. Gajewski, Warsaw, 2016, 133-146
- 15. Zampieri P., Zanini M.A., Faleschini F., Hofer L., Pellegrino C.: Failure analysis of masonry arch bridges subject to local pier scour. Engineering Failure Analysis, 79, 2017, 371-384, DOI: 10.1016/j.engfailanal.2017.05.028
- 16. Azar A.B., Sari A.: Structural failure of masonry arch bridges subjected to seismic action. Civil Engineering Infrastructures Journal (Iran), 2024, 1-28, available online, DOI: 10.22059/CEIJ.2024.366834.1975
- 17. Hokelekli E., Yilmaz B.N.: Effect of cohesive contact of backfill with arch and spandrel walls of a historical masonry arch bridge on seismic response. Periodica Polytechnica Civil Engineering, 63, 3, 2019, 926-937, DOI: 10.3311/PPci.14198
- 18. Özmen A., Sayın E.: Seismic response of a historical masonry bridge under near and far-fault ground motions. Periodica Polytechnica Civil Engineering, 65, 3, 2021, 946-958, DOI: 10.3311/PPci.17832
- 19. Zhao C., Xiong Y., Zhong X., Shi Z., Yang S.: A two-phase modeling strategy for analyzing the failure process of masonry arches. Engineering Structures, 212, 2020, 110525, DOI: 10.1016/j.engstruct.2020.110525
- 20. Bayraktar A., Hökelekli E.: Nonlinear soil deformability effects on the seismic damage mechanisms of brick and stone masonry arch bridges. International Journal of Damage Mechanics, 30, 3, 2021, 431-452, DOI: 10.1177/105678952097442
- 21. Scozzese F., Ragni L., Tubaldi E., Gara F.: Modal properties variation and collapse assessment of masonry arch bridges under scour action. Engineering Structures, 199, 2019, 109665, DOI: 10.1016/j.engstruct.2019.109665
- 22. Pulatsu B., Erdogmus E., Lourenço P.B.: Comparison of In-Plane and Out-of-Plane Failure Modes of Masonry Arch Bridges Using Discontinuum Analysis. Engineering Structures, 178, 2019, 24-36, DOI: 10.1016/j.engstruct.2018.10.016
- 23. Franck S.A., Bretschneider N., Slowik V.: safety analysis of existing masonry arch bridges by nonlinear finite element simulations. International Journal of Damage Mechanics, 29, 1, 2020, 126-143, DOI: 10.1177/1056789519865995
- 24. Azar A.B., Sari A.: Seismic assessment of historical bridge: Numerical modeling and structural evaluation. American Journal of Civil Engineering and Architecture, 11, 4, 2023, 127-135, https://www.sciepub.com/ajcea/abstract/15681, 09.09.2024
- 25. Han Y., Chun Q., Gao X.: Flood-induced forces and collapse mechanism of historical multi-span masonry arch bridges: The Putang bridge case. Engineering Failure Analysis, 153, 2023, 107564, DOI: 10.1016/j.engfailanal.2023.107564
- 26. Wang Z., Yang J., Zhou J., Yan K., Zhang Z., Zou Y.: Strengthening of existing stone arch bridges using UHPC: Theoretical analysis and case study. Structures, 43, 2022, 805-821, DOI: 10.1016/j.istruc.2022.06.055
- 27. Gönen S., Soyöz S.: Reliability-based seismic performance of masonry arch bridges. Structure and Infrastructure Engineering, 18, 12, 2022, 1658-1673, DOI: 10.1080/15732479.2021.1918726
- 28. Zizi M., Chisari C., De Matteis G.: Effect of the backfill material in the seismic response of multi-span masonry arch bridges under seismic loading. Procedia Structural Integrity, 44, 2023, 673-680, DOI: 10.1016/j.prostr.2023.01.088
- 29. Pantò B., Grosman S., Macorini L., Izzuddin B.A.: A macro-modelling continuum approach with embedded discontinuities for the assessment of masonry arch bridges under earthquake loading. Engineering Structures, 269, 2022, 114722, DOI: 10.1016/j.engstruct.2022.114722
- 30. Silva R., Costa C., Arêde A.: Numerical methodologies for the analysis of stone arch bridges with damage under railway loading. Structures, 39, 2022, 573-592, DOI: 10.1016/j.istruc.2022.03.063
- 31. Kocaman İ., Yılmaz M., Tosunoğlu F., Kazaz İ.: The behavior of the historical Çobandede bridge under flood load. Journal of Structural Engineering & Applied Mechanics, 5, 4, 2022, 249-263, DOI: 10.31462/jseam.2022.04249263
- 32. Silva R., Costa C., Arêde A., Ribeiro D.: Numerical simulations of experimental material testing in stone masonry arch railway bridge. Structure and Infrastructure Engineering, 20, 5, 2024, 633-652, DOI: 10.1080/15732479.2022.2119585
- 33. Dong Z.Q., Li G., Song B., Lu G.H., Li H.N.: Failure risk assessment method of masonry structures under earthquakes and flood scouring. Mechanics of Advanced Materials and Structures, 29, 21, 2022, 3055-3066, DOI: 10.1080/15376494.2021.1884322
- 34. Dorji J., Zahra T., Thambiratnam D., Lee D.: Strength assessment of old masonry arch bridges through moderate destructive testing methods. Construction and Building Materials, 278, 2021, 122391, DOI: 10.1016/j.conbuildmat.2021.122391
- 35. Saygılı Ö., Lemos J.V.: Seismic vulnerability assessment of masonry arch bridges. Structures, 33, 2021, 3311-3323, DOI: 10.1016/j.istruc.2021.06.057
- 36. Bayraktar A., Hökelekli E.: Nonlinear soil deformability effects on the seismic damage mechanisms of brick and stone masonry arch bridges. International Journal of Damage Mechanics, 30, 3, 2021, 431-452, DOI: 10.1177/1056789520974423
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-adc83a4a-9b5f-4b86-be88-fb2308712603